Codeforces Round #633 (Div. 2)
Codeforces Round #633(Div.2)
\(A.Filling\ Diamonds\)
答案就是构成的六边形数量+1
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
using LL = int_fast64_t;
void solve(){
LL n; cin >> n;
cout << n << endl;
}
int main(){
____();
int T;
for(cin >> T; T; T--) solve();
return 0;
}
\(B.Sorted\ Adjacent\ Differences\)
考虑排完序之后从中间开始一左一右选择即可
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 2e5+7;
int n,A[MAXN];
void solve(){
cin >> n;
for(int i = 1; i <= n; i++) cin >> A[i];
sort(A+1,A+1+n);
int mid = n / 2 + 1;
int lp = mid - 1, rp = mid + 1;
cout << A[mid] << ' ';
while(lp!=0 or rp!=n+1){
if(lp!=0) cout << A[lp--] << ' ';
if(rp!=n+1) cout << A[rp++] << ' ';
}
cout << endl;
}
int main(){
____();
int T;
for(cin >> T; T; T--) solve();
return 0;
}
\(C.Powered\ Addition\)
考虑对于每个数,需要加的最小值为其之前的最大值和这个值的差值,然后找到这个差值的最大值找到其二进制最高位即可
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e5+7;
using LL = int_fast64_t;
int n;
LL A[MAXN];
void solve(){
cin >> n;
for(int i = 1; i <= n; i++) cin >> A[i];
LL minn = 1e10;
LL delta = 0;
for(int i = n; i >= 1; i--){
delta = max(delta,A[i]-minn);
minn = min(A[i],minn);
}
if(!delta) cout << 0 << endl;
else{
while(delta!=(delta&-delta)) delta -= (delta&-delta);
cout << __builtin_ctz(delta)+1 << endl;
}
}
int main(){
____();
int T;
for(cin >> T; T; T--) solve();
return 0;
}
\(D.Edge\ Weight\ Assignment\)
考虑最少不同的数,各个叶子节点到根的距离的奇偶性如果一样,那么所有边权都可以相等,否则的话用\(1,2,3\)三个数来赋值边权必然可以满足条件
对于最多的不同的数,考虑树形\(DP\),\(dp[i]\)表示以\(i\)为根的子树所用的最多的不同边权,以非叶节点为根进行\(dfs\),考虑转移,对于\(u\)点的所有儿子,如果存在叶子节点的话,\(dp[u]+=1\),叶子节点连上来的边权必然相等,对于儿子中的非叶子节点\(v\),转移为\(dp[u] += dp[v] + 1\),可以假设叶子节点走到儿子节点的权值异或和为\(x\),那么不同儿子子树中的叶子节点走到该儿子节点的异或和可以不同,所以从儿子连到当前点的边权也可以不一样。
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e5+7;
using LL = int_fast64_t;
int n,depth[MAXN],f[MAXN];
vector<int> G[MAXN];
bool odd = false, even = false;
void dfs(int u, int par){
depth[u] = depth[par] + 1;
bool zero = false;
if(par and G[u].size()==1){
if(depth[u]&1) odd = true;
else even = true;
}
for(int v : G[u]){
if(v==par) continue;
dfs(v,u);
if(f[v]==0) zero = true;
else f[u] += f[v] + 1;
}
if(zero) f[u]++;
}
int main(){
____();
cin >> n;
for(int i = 1; i < n; i++){
int u, v;
cin >> u >> v;
G[u].emplace_back(v);
G[v].emplace_back(u);
}
int root = 1;
for(int i = 1; i <= n; i++) if(G[i].size()>1) root = i;
dfs(root,0);
cout << ((odd and even)?3:1) << ' ' << f[root] << endl;
return 0;
}
\(C.Perfect\ Triples\)
找规律题
对着表找了半天规律没写出来,我菜死了
用四进制表示每一位,可以打表出来
001 002 003
//1行
010 020 030
011 022 033
012 023 031
013 021 032
//1<<2行
100 200 300
101 202 303
102 203 301
103 201 302
110 220 330
111 222 333
112 223 331
113 221 332
... ... ...
//1<<4行
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
using LL = int_fast64_t;
void solve(){
LL n; cin >> n;
LL m = (n - 1) / 3 + 1, md = n % 3 ? n % 3 : 3, ret = 0, bit = 1, num = 0, a[4];
if(md==1) a[0] = 3, a[1] = 0, a[2] = 1, a[3] = 2;
else if(md==2) a[0] = 1, a[1] = 0, a[2] = 2, a[3] = 3;
else a[0] = 2, a[1] = 0, a[2] = 3, a[3] = 1;
while(true){
if(bit>=m){
ret += (md<<num);
break;
}
m -= bit;
ret += (a[((m-1) / bit + 1) % 4]<<num);
bit <<= 2, num += 2;
}
cout << ret << endl;
}
int main(){
____();
int T;
for(cin >> T; T; T--) solve();
return 0;
}
Codeforces Round #633 (Div. 2)的更多相关文章
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- Codeforces Round #279 (Div. 2) ABCDE
Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name A Team Olympiad standard input/outpu ...
- Codeforces Round #262 (Div. 2) 1003
Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...
- Codeforces Round #262 (Div. 2) 1004
Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...
- Codeforces Round #371 (Div. 1)
A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...
- Codeforces Round #268 (Div. 2) ABCD
CF469 Codeforces Round #268 (Div. 2) http://codeforces.com/contest/469 开学了,时间少,水题就不写题解了,不水的题也不写这么详细了 ...
随机推荐
- 讲讲Java8的Optional类
前言 Java 8中引入了 Optional 类来解决 NullPointerException 与繁琐的 null 检查,该类首次出现在 Guava.Java 8 才成为类库中的一部分. 入门 Op ...
- HP Proliant DL580 gen9 阵列卡P440AR 高速缓存 被禁用
摘录内容: IMPORTANT: This issue does NOT occur when the operating system shuts down gracefully. In addit ...
- Linux下安装svn教程
前言 最近买了新服务器,准备开始弄一些个人的开源项目.有了服务器当然是搞一波svn啦.方便自己的资料上传和下载.于是在此记录搭建svn的方式,方便以后直接使用. 安装 使用yum源进行安装,十分的方便 ...
- Laya 断点调试
Laya 打断点调试并查看堆栈的方法 发现直接加断点不行没办法调试,直接使用这中方法好像可以,选择F5调试 var camera =this.GameScene.getChildByName(&quo ...
- Netty与NIO
初识Netty Netty是由JBoss提供的一个Java的开源框架,是GitHub上的独立项目. Netty是一个异步的,基于事件驱动的网络应用框架,用于快速开发高性能.高可靠的网络IO程序. Ne ...
- C++ 中的 inline 详解
inline:是一个关键词,放在一个函数前面,说明这个函数是inline函数. inline函数是什么?inline有什么作用? 为了解答这个问题,我们首先要知道编译器是如何为我们工作的. 先看一段代 ...
- Java并发包源码学习系列:详解Condition条件队列、signal和await
目录 Condition接口 AQS条件变量的支持之ConditionObject内部类 回顾AQS中的Node void await() 添加到条件队列 Node addConditionWaite ...
- PAT Advanced 1003 Emergency 详解
题目与翻译 1003 Emergency 紧急情况 (25分) As an emergency rescue team leader of a city, you are given a specia ...
- 浅入深出了解XXE漏洞
环境搭建 https://github.com/c0ny1/xxe-lab 为了更深入的理解,我准备理论和实际相结合的了解XXE! 浅谈XML 初识XML 一个好的代码基础能帮助你更好理解一类漏洞,所 ...
- 通过SE14重建数据库表
通过程序中的SQL语句向数据库表中插入的内容,系统无法转换,并且已经存在于数据库表中,那么当对该表进行保存数据的修改时,可能会导致该表从数据库中的删除. 举了例子:(完全是为了方便理解) SAP系统, ...