题意:给你两个正整数a和b,询问q次,每次给你一个区间[l,r],问[l,r]中有多少数字满足:x%a%b!=a%b%a.

题解:看公式无从下手的题,一般都是要找规律的.首先,我们知道,假如x%a%b!=x%b%a,那么:(x+lcm(a,b))%a%b!=(x+lcm(a,b))%b%a,(这个知识在exgcd中很常用).所以,我们打表发现,这其实是一个循环节的问题.

   首先枚举[1,lcm]中有多少不相同的,然后每次询问,我们处理一下区间就好了,公式:(r/lcm-(l-1)/lcm)*num[lcm]+num[r%lcm]-num[(l-1)%lcm]

 代码:

 1 #include <iostream>
2 #include <cstdio>
3 #include <cstring>
4 #include <cmath>
5 #include <algorithm>
6 #include <stack>
7 #include <queue>
8 #include <vector>
9 #include <map>
10 #include <set>
11 #include <unordered_set>
12 #include <unordered_map>
13 #define ll long long
14 #define fi first
15 #define se second
16 #define pb push_back
17 #define me memset
18 const int N = 1e6 + 10;
19 const int mod = 1e9 + 7;
20 using namespace std;
21 typedef pair<int,int> PII;
22 typedef pair<long,long> PLL;
23
24 int t;
25 ll a,b,q;
26 ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
27 ll l,r;
28 ll num[N];
29 ll lcm;
30
31 int main() {
32 ios::sync_with_stdio(false);
33 cin>>t;
34 while(t--){
35 cin>>a>>b>>q;
36 lcm=a*b/gcd(a,b);
37 for(int i=1;i<=lcm;++i){
38 num[i]=num[i-1];
39 if(i%a%b!=i%b%a) num[i]++;
40 }
41 while(q--){
42 cin>>l>>r;
43 printf("%lld ",(r/lcm-(l-1)/lcm)*num[lcm]+num[r%lcm]-num[(l-1)%lcm]);
44 }
45 puts("");
46 }
47 return 0;
48 }

Codeforces ECR86 C. Yet Another Counting Problem(规律,区间)的更多相关文章

  1. The Counting Problem

    The Counting Problem 询问区间\([a,b]\)中\(1\sim 9\)出现的次数,0 < a, b < 100000000. 解 显然为数位递推,考虑试填法,现在关键 ...

  2. Educational Codeforces Round 40 F. Runner's Problem

    Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...

  3. UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。

    /** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...

  4. 『The Counting Problem 数位dp』

    The Counting Problem Description 求 [L,R]内每个数码出现的次数. Input Format 若干行,一行两个正整数 L 和 R. 最后一行 L=R=0,表示输入结 ...

  5. POJ2282 The Counting Problem

    题意 Language:DefaultEspañol The Counting Problem Time Limit: 3000MS Memory Limit: 65536K Total Submis ...

  6. C. Yet Another Counting Problem(循环节规律)

    \(给出a,b,l,r,求在区间[l,r]内有多少x满足x%a%b!=x%b%a\) \(--------------------分割!!~----------------------------\) ...

  7. Codeforces Beta Round #17 A - Noldbach problem 暴力

    A - Noldbach problem 题面链接 http://codeforces.com/contest/17/problem/A 题面 Nick is interested in prime ...

  8. Codeforces Gym 100114 A. Hanoi tower 找规律

    A. Hanoi tower Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descript ...

  9. codeforces Gym 100418D BOPC 打表找规律,求逆元

    BOPCTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.action?c ...

随机推荐

  1. 给mysql选择调度策略

    在gun/linux上,队列调度决定了到块设备的请求实际上发送到底层设置的顺序.默认情况下是cfg(完全公平排队)策略,随意使用的笔记本和台式机使用中个调度策略没有问题,并且有助于防止io饥饿,但是用 ...

  2. 【Python】国内pip节点

    pip在国内使用国内节点: http://pypi.douban.com/simple 现在已经无法使用了,新版的python3需要使用https://pypi.douban.com/simple/ ...

  3. Building a high performance JSON parser

    Building a high performance JSON parser https://dave.cheney.net/high-performance-json.html

  4. 网络编程中 TCP 半开连接和TIME_WAIT 学习

    https://blog.csdn.net/chrisnotfound/article/details/80112736 上面的链接就是说明来 SO_KEEPALIVE 选项 为什么还需要 在应用层开 ...

  5. httpd反向代理实践(二)

    div.example { background-color: rgba(229, 236, 243, 1); color: rgba(0, 0, 0, 1); padding: 0.5em; mar ...

  6. 20201102gryz模拟赛解题报告

    简述我的苦逼做题经历 考的是NOIP2017day1原题, 开始看到小凯的疑惑时感觉特水,因为这题初中老师讲过, 很nice的秒切 T2发现是个大模拟,虽然字符串不太会用,但起码题意很好理解 边打代码 ...

  7. 倍增小结 ST 与 LCA

    倍增 倍增我是真滴不会 倍增法(英语:binary lifting),顾名思义就是翻倍. 能够使线性的处理转化为对数级的处理,大大地优化时间复杂度. (ps:上次学倍增LCA,没学会,老老实实为了严格 ...

  8. Treap——堆和二叉树的完美结合,性价比极值的搜索树

    大家好,今天和大家聊一个新的数据结构,叫做Treap. Treap本质上也是一颗BST(平衡二叉搜索树),和我们之前介绍的SBT是一样的.但是Treap维持平衡的方法和SBT不太一样,有些许区别,相比 ...

  9. (十一)整合 FastDFS 中间件,实现文件分布式管理

    整合 FastDFS 中间件,实现文件分布式管理 1.FastDFS简介 1.1 核心角色 1.2 运转流程 2.SpringBoot整合FastDFS 2.1 核心步骤 2.2 核心依赖 2.3 配 ...

  10. Dbeaver 连接 phoenix

    Dbeaver 连接 phoenix 1.新建连接 2.选择连接类型Phoenix 3.设置驱动 4.准备驱动包 5.添加驱动 6.添加 Zookeeper Base Path 7.找到驱动类 8.配 ...