[矩阵乘法] PKU3233 Matrix Power Series
[
矩
阵
乘
法
]
M
a
t
r
i
x
P
o
w
e
r
S
e
r
i
e
s
[矩阵乘法]Matrix Power Series
[矩阵乘法]MatrixPowerSeries
Description
Given a
n
×
n
n × n
n×n matrix
A
A
A and a positive integer
k
k
k, find the sum
S
=
A
+
A
2
+
A
3
+
.
.
.
+
A
k
S = A + A^2 + A^3 + ... + A^k
S=A+A2+A3+...+Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers
n
n
n (
n
n
n ≤
30
30
30),
k
k
k (
k
k
k ≤
1
0
9
10^9
109) and
m
m
m (
m
m
m <
1
0
4
10^4
104). Then follow n lines each containing
n
n
n nonnegative integers below
32
,
768
32,768
32,768, giving
A
A
A’s elements in row-major order.
Output
Output the elements of
S
S
S modulo m in the same way as
A
A
A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
题目解析
为了降低时间复杂度,考虑矩阵乘法
然后可以构造出一个
2
r
2r
2r阶的矩阵
T
T
T
∣
A
E
O
E
∣
\begin{vmatrix} A & E \\ O & E \\ \end{vmatrix}
∣∣∣∣AOEE∣∣∣∣
其中:
A
A
A为输入的矩阵(
A
A
A是
r
r
r阶的矩阵)
O
O
O为全零矩阵 (
O
O
O是值全为
0
0
0的
r
r
r阶矩阵)
E
E
E为对角线矩阵(
E
E
E是除了对角线为
1
1
1,其他的都为
0
0
0的矩阵)
然后可以得出:
∣
S
[
n
−
1
]
,
A
n
∣
=
∣
S
[
n
−
2
]
,
A
n
−
1
∣
∗
T
|S[n-1],A^n| = |S[n-2],A^{n-1}| * T
∣S[n−1],An∣=∣S[n−2],An−1∣∗T
然后通过将矩阵乘法的结合律通过快速幂来计算出
T
n
T^n
Tn再可
A
∗
T
n
A*T^n
A∗Tn来求得答案
关于
T
T
T矩阵的实现
//全零矩阵的实现
//matrix 是已经定义的结构体,n和m是表示矩阵的长和宽,t是矩阵的值
matrix O (int re)
{
matrix c;
c.n = c.m = re;
for (int i = 1; i <= re; ++ i)
for (int j = 1; j <= re; ++ j)
c.t[i][j] = 0;
return c;
}
//对角线矩阵的实现
//matrix 是已经定义的结构体,n和m是表示矩阵的长和宽,t是矩阵的值,O函数为前文定义的全零矩阵
matrix E (int re)
{
matrix c;
c.n = c.m = re;
c = O (re);
for (int i = 1; i <= re; ++ i)
c.t[i][i] = 1;
return a;
}
//关于矩阵的合并。n,m,t,O(),E()前文已述,T1就是前文提到的T矩阵,re为前文提到的r,a是前文提到的A
matrix hb (int re)
{
t1.n = t1.m = re * 2;
for (int i = 1; i <= re; ++ i)
for (int j = 1; j <= re; ++ j)
t1.t[i][j] = a.t[i][j];
matrix er = E (re);
for (int i = 1; i <= re; ++ i)
for (int j = re + 1; j <= re * 2; ++ j)
t1.t[i][j] = er.t[i][j];
for (int i = re + 1; i <= re * 2; ++ i)
for (int j = re + 1; j <= re * 2; ++ j)
t1.t[i][j] = er.t[i][j];
for (int i = re + 1; i <= re * 2; ++ i)
for (int j = 1; j <= re; ++ j)
t1.t[i][j] = 0;
}
[矩阵乘法] PKU3233 Matrix Power Series的更多相关文章
- Poj 3233 Matrix Power Series(矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...
- POJ 3233 Matrix Power Series (矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 11954 Accepted: ...
- 线性代数(矩阵乘法):POJ 3233 Matrix Power Series
Matrix Power Series Description Given a n × n matrix A and a positive integer k, find the sum S = ...
- 构造矩阵解决这个问题 【nyoj299 Matrix Power Series】
矩阵的又一个新使用方法,构造矩阵进行高速幂. 比方拿 nyoj299 Matrix Power Series 来说 给出这样一个递推式: S = A + A2 + A3 + - + Ak. 让你求s. ...
- [ACM] POJ 3233 Matrix Power Series (求矩阵A+A^2+A^3...+A^k,二分求和或者矩阵转化)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15417 Accepted: ...
- [POJ3233]Matrix Power Series 分治+矩阵
本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [POJ3233]Matrix Power Series 分治+矩阵 题目大意 A为n×n(n<= ...
- C++题解:Matrix Power Series ——矩阵套矩阵的矩阵加速
Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: ...
- POJ 3233 Matrix Power Series(矩阵快速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 ...
- POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】
任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K To ...
随机推荐
- vue & dynamic components
vue & dynamic components https://vuejs.org/v2/guide/components-dynamic-async.html keep-alive htt ...
- ASP.NET Core中如何对不同类型的用户进行区别限流
老板提出了一个新需求,从某某天起,免费用户每天只能查询100次,收费用户100W次. 这是一个限流问题,聪明的你也一定想到了如何去做:记录用户每一天的查询次数,然后根据当前用户的类型使用不同的数字做比 ...
- Golang 实现 Redis(9): 使用GeoHash 搜索附近的人
本文是使用 golang 实现 redis 系列的第九篇,主要介绍如何使用 GeoHash 实现搜索附近的人. 搜索附近的POI是一个非常常见的功能,它的技术难点在于地理位置是二维的(经纬度)而我们常 ...
- Linux 网络分析必备技能:tcpdump 实战详解
大家好,我是肖邦,这是我的第 11 篇原创文章. 今天要分享的是 tcpdump,它是 Linux 系统中特别有用的网络工具,通常用于故障诊断.网络分析,功能非常的强大. 相对于其它 Linux 工具 ...
- three.js cannon.js物理引擎之ConvexPolyhedron多边形
年后第一天上班,郭先生来说一说cannon.js的ConvexPolyhedron(多边形),cannon.js是一个物理引擎,内部通过连续的计算得到各个时间点的数据的状态,three.js的模型可以 ...
- easyPOI基本用法
参考网址:http://www.wupaas.com/ 1.Excel文件的导入导出 项目源码:后台:https://github.com/zhongyushi-git/easypoi-demo-ad ...
- 04.从0实现一个JVM语言系列之语义分析器-Semantic
从0实现JVM语言之语义分析-Semantic 源码github, 如果这个系列文章对您有帮助, 希望获得您的一个star 本节相关语义分析package地址 致亲爱的读者: 个人的文字组织和写文章的 ...
- springboot源码解析-管中窥豹系列之自动装配(九)
一.前言 Springboot源码解析是一件大工程,逐行逐句的去研究代码,会很枯燥,也不容易坚持下去. 我们不追求大而全,而是试着每次去研究一个小知识点,最终聚沙成塔,这就是我们的springboot ...
- 如何使用 Github Actions 自动抓取每日必应壁纸?
如何白嫖 Github 服务器自动抓取必应搜索的每日壁纸呢? 如果你访问过必应搜索网站,那么你一定会被搜索页面的壁纸吸引,必应搜索的壁纸每日不同,自动更换,十分精美.这篇文章会介绍如何一步步分析出必应 ...
- Redis之面试连环炮
目录 1.简单介绍一下Redis 2.分布式缓存常见的技术选型方案有哪些? 3.Redis和Memcached的区别和共同点 4. 缓存数据的处理流程是怎样的? 5. 为什么要用 Redis/为什么要 ...