[Fundamental of Power Electronics]-PART I-1.引言-1.1 功率处理概论
1.1 功率处理概论
电力电子领域关注的是利用电子设备对电力进行处理[1–7]。如图1.1所示,其中关键部件就是开关变换器。通常,开关变换器包含电源输入和控制输入端口以及电源输出端口。原始输入功率按控制输入指定的方式进行处理,产生相应的条件输出功率。其可以执行以下几个基本功能之一[2]。在DC-DC变换器中,直流输入电压被转换为具有更大或更小幅值的直流输出电压,也可能具有相反的极性,或者具有输入和输出参考地的隔离。在AC-DC整流器中,交流输入电压被整流,产生直流输出电压。可以控制直流输出电压和/或交流输入电流波形。反过来,DC-AC逆变,包括将直流输入电压转换为具有大小和频率可控的交流输出电压。AC -AC交交变频涉及到将交流输入电压转换为给定的交流输出电压,其大小和频率可控。
Fig 1.1. The switching converter,a basic power processing block
控制总是必须要的。在输入电压和负载电流变化的情况下,几乎总是希望产生一个稳定的输出电压。如图1.2所示,控制器是任何功率处理系统的组成部分。
Fig 1.2. A controller is generally required
在任何电源处理应用中,高效率都是必不可少的。这样做的主要原因通常不是为了节省电费,也不是为了节约能源,尽管这种追求是高尚的。相反,高效变换器是必要的,因为设计低效率转换器对于大功率输出而言是不切实际的。变换器效率为:
\]
变换器中功率损耗为:
\]
公式1.2表达的关系被绘制在图1.3中。在一个效率为50%的变换器中,元器件耗散的功率\(P_{loss}\)与变换器输出功率\(P_{out}\)相等。这部分功率被转换成热,必须从变换器中释放。如果输出功率很大,那么损耗功率也是如此。这就需要大型且昂贵的散热系统,变换器内的电子元件在高温下运行,并且降低了系统可靠性。实际上,在较高功率输出情况下,可能无法以现有技术对其进行冷却。(作者当时散热技术不行,目前散热技术已经相对成熟)
Fig 1.3. Converter power loss vs efficiency
获得更高输出功率的关键是提高效率。例如,如果变换器效率为90%,则变换器的损耗功率仅等于11%的输出功率。效率是衡量给定转换器技术成功与否的良好指标。图1.4给出了一个变换器,该变换器以很高的效率处理较大功率。由于损失的功率很小,因此可以高密度地封装转换器元件,从而使得转换器的尺寸小,重量轻且温升低。
Fig 1.4. A goal of current converter technology is to construct converters of small size and weight,which process substantial power at high efficiency
我们如何建立一个能够改变电压而忽略耗散功率的电路?各种传统的电路元件如图1.5所示。可用的电路元件大致分为电阻元件,电容元件,包括电感器和变压器的磁性器件,以线性模式运行的半导体器件(例如,作为A类或B类放大器)以及在开关模式下运行的半导体器件(例如在逻辑器件中晶体管工作在饱和或截止状态)。在效率不是主要问题的常规信号处理应用中,通常会尽可能避免使用磁性器件,因为它们的尺寸较大且难以将其集成到集成电路中。相反,电容器和磁性器件是开关变换器的重要组成部分,因为理想情况下它们不消耗功率。同时避免使用电阻元件以及线性模式半导体器件[2]。同时还采用了开关模式半导体器件。当半导体器件在截止状态下操作时,其电流为零,因此其功耗为零。当半导体器件在导通(饱和)状态下工作时,其电压降很小,因此其功耗也很小。无论哪种情况,半导体器件所消耗的功率都是低的。因此,电容和电感元件以及开关模式半导体器件可用于组合形成高效变换器。
Fig 1.5. Devices avaliable to the circuit designers
现在让我们考虑如何构建图1.6中所示的简单DC-DC变换器示例。输入电压\(V_{g}\)为100V。希望向\(5\Omega\)有效负载提供50V,这样直流负载电流为10A。
Fig 1.6. A simple power processing example:construction of a 500W DC-DC converter
入门级电路教科书描述了一种能够实现所需功能的低效率方法:图1.7(a)中所示的分压器电路。这个DC-DC变换器器仅由一个可变电阻器组成,该电阻器的值经过调整,来获得所需的输出电压。负载电流流经可变电阻器。对于指定的电压和电流水平,可变电阻器中消耗的功率\(P_{loss}\)等于负载功率\(P_{out}=500W\)。电压源\(V_{g}\)提供输入功率\(P_{in}=1000W\)图1.7(b)展示了一种更实际的实现方式,称为线性串联调整器。图1.7(a)的可变电阻器由线性模式功率晶体管代替,该晶体管的基极电流由反馈系统控制,从而获得所需的输出电压。图1.7(b)的线性模式晶体管的功耗与图1.7(a)的可变电阻器损耗的500 W大致相同。串联通过线性稳压器通常只能在几瓦的低功率水平上找到现代应用。
(a)
(b)
Fig 1.7 Changing the dc voltage via dissipative means:(a) voltage divider,(b) series pass regulator
图1.8说明了另一种方法。如图所示,连接了单刀双掷(SPDT)开关。当开关位于位置1时,开关输出电压\(V_{s}(t)\)等于转换器输入电压\(V_{g}\);当开关处于位置2时,开关输出电压等于零。如图1.9所示,开关位置定期变化,从而\(V_{s}(t)\)是具有频率\(f_{s}\)和周期\(T_{s}=\frac{1}{f_{s}}\)的矩形波形。占空比D定义为开关占据位置1的时间的时间比例。因此,\({0}\leq{D}\leq{1}\)。实际上,SPDT开关是使用开关模式半导体器件来控制其实现单刀双掷功能的。
Fig 1.8 Insertion of SPDT switch which changes the dc component of the voltage
Fig 1.9 Switching output voltage waveform \(V_{s}(t)\)
开关改变电压的直流分量。回想一下傅里叶分析,周期波形的dc分量等于其平均值。因此\(V_{s}(t)\),的直流分量是:
\]
因此,开关以等于占空比D的因数来改变直流电压。要将输入电压\(V_{g}\)转换为所需的\(V=50V\)输出电压,则需要\(D=0.5\)的占空比。
开关耗散的功率理想上为零。当开关触点闭合时,它们的电压为零,因此功耗为零。当开关触点断开时,电流为零,功耗又为零。因此,我们使用理想的无损器件成功改变了直流电压分量。
除了所需的直流分量外,开关输出电压波形还包含开关频率的不良谐波。在大多数应用中,必须消除这些谐波,以使输出电压基本上等于直流分量。为此,可以使用低通滤波器。图1.10给出了单节LC低通滤波器的介绍。如果滤波器的转折频率足够低于开关频率,则滤波器实际上仅通过直流分量。如果开关,电感器和电容器元件是理想的,则该DC-DC变换器的效率可以达到100%。
Fig 1.10 Addtional of L-C low-pass filter,for removal of switching harmonics
在图1.11中,引入了用于调节输出电压的控制系统。由于输出电压是开关占空比的函数,因此可以构建一个控制系统,该系统可以改变占空比以使输出电压遵循给定的参考值。图1.11还说明了使用开关模式半导体器件实现SPDT开关的典型方式。在图1和2中开发的转换器功率级。1.8至1.11被称为降压转换器,因为它降低了直流电压。
Fig 1.11 Addtional of control system to regulate the output voltage
同样可以构建执行其他功率处理功能的转换器,图1.12给出了一个称为升压转换器的电路,其中电感器和SPDT开关的位置互换。该变换器能够产生幅度大于输入电压的输出电压。通常,使用包含嵌入在电抗元件网络内的开关装置的转换器,可以将任何给定的输入电压转换为任何所需的输出电压。
Fig 1.12 The boost converter:(a) ideal converter circuit,(b) output voltage V vs transistor duty cycle D
图1.13(a)展示了一个简单的单相逆变器电路。如图1.13(b)所示,开关占空比正弦调制。这导致开关输出电压\(V_{s}(t)\)包含低频正弦波分量。选择LC滤波器的截止频率,以通过所需的低频分量,但衰减高频开关谐波。控制器对占空比进行调制,以便获得所需的输出频率和电压幅值。
Fig 1.13 A bridge type DC-AC inverter:(a) ideal inverter circuit,(b) typical pulse-width-modulated switch voltage waveform \(V_{s}(t)\) ,and its low-frequency component
[参考文献]
[1] W. E. NEWELL, “Power Electronics—Emerging from Limbo,” IEEE Power Electronics Specialists Conference, 1973 Record, pp. 6-12.
[2] R. D. MIDDLEBROOK, “Power Electronics: An Emerging Discipline,” IEEE International Symposium on Circuits and Systems, 1981 Proceedings, April 1981.
[3] R. D. MIDDLEBROOK, “Power Electronics: Topologies, Modeling, and Measurement,” IEEE International Symposium on Circuits and Systems, 1981 Proceedings, April 1981.
[4] S. CUK, “Basics of Switched-Mode Power Conversion: Topologies, Magnetics, and Control,” in Advances in Switched-Mode Power Conversion, vol. 2, pp. 279--310, Irvine: Teslaco, 1981.
[5] N. MOHAN, “Power Electronics Circuits: An Overview,” IEEE IECON, 1988 Proceedings, pp. 522-527.
[6] B. K. BOSE, “Power Electronics—A Technology Review,” Proceedings of the IEEE, vol. 80, no. 8, August 1992, pp. 1303-1334.
[7] M. NISHIHARA, “Power Electronics Diversity,” International Power Electronics Conference (Tokyo), 1990 Proceedings, pp. 21-28.
[Fundamental of Power Electronics]-PART I-1.引言-1.1 功率处理概论的更多相关文章
- [Fundamental of Power Electronics]-PART I-4.开关实现-4.2 功率半导体器件概述
4.2 功率半导体器件概述 功率半导体设计中最根本的挑战是获得高击穿电压,同时保持低正向压降和导通电阻.一个密切相关的问题是高压低导通电阻器件的开关时间更长.击穿电压,导通电阻和开关时间之间的折衷是各 ...
- [Fundamental of Power Electronics]-PART II-7. 交流等效电路建模-7.3 脉冲宽度调制器建模
7.3 脉冲宽度调制器建模 我们现在已经达成了本章开始的目标,为图7.1推导了一个有效的等效电路模型.但仍存在一个细节,对脉冲宽度调制(PWM)环节进行建模.如图7.1所示的脉冲宽度调制器可以产生一个 ...
- [Fundamental of Power Electronics]-PART II-9. 控制器设计-9.1 引言
9.1 引言 在所有的开关变换器中,输出电压\(v(t)\)都是输入电压\(v_{g}(t)\),占空比\(d(t)\),负载电流\(i_{load}(t)\)和电路元件值的函数.在DC-DC变换器应 ...
- [Fundamental of Power Electronics]-PART II-7.交流等效电路建模-7.1 引言
7.1 引言 变换器系统总是需要反馈的.例如,在典型的DC-DC变换器应用中,无论输入电压\(V_{g}(t)\)和输出有效负载\(R\)如何变化,都必须使输出电压\(v(t)\)保持恒定.这是通过构 ...
- [Fundamental of Power Electronics]-PART I-1.引言-1.2 1.3 电力电子技术的几个应用、本书内容
1.2 电力电子技术的几个应用 高效开关变换器面临的功率范围从 (1)小于1瓦(电池供电的便携式设备内的DC-DC转换器)到(2)计算机及办公设备中的几十,几百,数千瓦到(3)变速电机驱动器中上千瓦及 ...
- [Fundamental of Power Electronics]-PART I-2.稳态变换器原理分析-2.1 引言
2.1 引言 在上一章中,介绍了降压变换器作为降低直流电压的一种方法,其仅使用非耗散开关,电感器和电容器.开关状态变换产生一个矩形波形\(v_{s}(t)\),如图2.1所示.当开关位于位置1时,该电 ...
- [Fundamental of Power Electronics]-PART I-4.开关实现-4.1 开关应用
4.1 开关应用 4.1.1 单象限开关 理想的SPST(Single pole single throw)开关如图4.1所示.开关包含电源端子1和0,其电流和电压极性如图所示.在接通状态下,电压\( ...
- [Fundamental of Power Electronics]-PART I-4.开关实现-4.3 开关损耗/4.4 小结
4.3 开关损耗/4.4 小结 使用半导体器件实现开关后,我们现在可以讨论变换器中损耗和低效的另一个主要来源:开关损耗.如前所述,半导体器件的导通和关断转换需要几十纳秒到几微秒的时间.在这些开关转换期 ...
- [Fundamental of Power Electronics]-PART I-6.变换器电路-6.4 变换器评估与设计/6.5 重点与小结
6.4 变换器评估与设计 没有完美适用于所有可能应用场合的统一变换器.对于给定的应用和规格,应该进行折中设计来选择变换器的拓扑.应该考虑几种符合规格的拓扑,对于每种拓扑方法,对比较重要的量进行计算,比 ...
随机推荐
- JavaScript Best Practice
JavaScript Best Practice Clean, maintainable, execute code
- shit 钉钉
shit 钉钉 钉钉 圈子 入口, 没有 https://www.dingtalk.com/qidian/help-detail-1000131196.html shit bug 全员圈 这个好像是要 ...
- js 生成Excel
https://www.npmjs.com/package/xlsx 安装依赖 npm install xlsx Example import * as XLSX from "xlsx&qu ...
- Go之Casbin简介,安装,模型,存储,函数
简介 Casbin是一个强大的,高效的开源访问控制框架,其权限管理机制支持多种访问控制模型 支持编程语言 不同语言中支持的特性 我们一直致力于让 Casbin 在不同的编程语言中拥有相同的特性. 但是 ...
- Linux基本命令——系统管理和磁盘管理
转: Linux基本命令--系统管理和磁盘管理 Linux命令--系统管理和磁盘管理 一.系统管理 1.1 时间相关指令 <1> 查看当前日历: cal <2> 显示或设置时间 ...
- HDOJ-6656(数论+逆元)
Kejin Player HDOJ-6656 设f[i]为从i升级到i+1期望需要的金钱,由于每级都是能倒退或者升级到i+1,所以询问从l,r的期望金钱可以直接前缀和,那么推导每一级升级需要的期望钱也 ...
- CentOS7安装 xmlsec1 编译并运行官方示例
1. 自动安装下列软件和依赖(默认已安装libxml2和libxslt) yum install xmlsec1-openssl xmlsec1-openssl-devel 2. 查看官网 www.a ...
- C#连接Excel读取与写入数据库SQL ( 下 )
接上期 dataset简而言之可以理解为 虚拟的 数据库或是Excel文件.而dataset里的datatable 可以理解为数据库中的table活着Excel里的sheet(Excel里面不是可以新 ...
- 漏洞复现-CVE-2016-4437-Shiro反序列化
0x00 实验环境 攻击机:Win 10 靶机也可作为攻击机:Ubuntu18 (docker搭建的vulhub靶场)(兼顾反弹shell的攻击机) 0x01 影响版本 Shiro <= ...
- JVM笔记 -- JVM的生命周期介绍
Github仓库地址:https://github.com/Damaer/JvmNote 文档地址:https://damaer.github.io/JvmNote/ JVM生命周期 启动 执行 退出 ...