题目描述

给定两个单词(初始单词和目标单词)和一个单词字典,请找出所有的从初始单词到目标单词的最短转换序列:
每一次转换只能改变一个单词
每一个中间词都必须存在单词字典当中
例如:
给定的初始单词start="hit",
目标单词end ="cog"。
单词字典dict =["hot","dot","dog","lot","log"]
返回的结果为:
  [↵    ["hit","hot","dot","dog","cog"],↵    ["hit","hot","lot","log","cog"]↵  ]

注意:

题目中给出的所有单词的长度都是相同的
题目中给出的所有单词都仅包含小写字母

Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:
  1. Only one letter can be changed at a time
  2. Each intermediate word must exist in the dictionary

For example,

Given:
start ="hit"
end ="cog"
dict =["hot","dot","dog","lot","log"]

Return

  [↵    ["hit","hot","dot","dog","cog"],↵    ["hit","hot","lot","log","cog"]↵  ]↵

class Solution {
public:/*
    vector<vector<string>> findLadders(string start, string end, unordered_set<string> &dict) {
        vector<vector<string>> paths;
        vector<string> path(1, start);
        if(start == end){
            paths.push_back(path);
            return paths;
        }
        unordered_set<string> forward, backward;
        forward.insert(start);
        backward.insert(end);
        unordered_map<string, vector<string>> nexts;
        bool isForward = false;
        if(findLaddersHelper(forward, backward, dict, nexts, isForward))
            getPath(start, end, nexts, path, paths);
        return paths;
    }
private:
    bool findLaddersHelper(unordered_set<string> &forward,
                           unordered_set<string> &backward,
                           unordered_set<string> &dict,
                           unordered_map<string, vector<string>> nexts,
                           bool &isForward){
        if(forward.empty())
            return false;
        if(forward.size() > backward.size())
            return findLaddersHelper(backward, forward, dict, nexts, isForward); //从words数较少的一边开始寻路
        for(auto it=forward.begin(); it!=forward.end(); it++)
            dict.erase(*it);
        for(auto it=backward.begin(); it!=backward.end(); it++)
            dict.erase(*it);
        unordered_set<string> nextLevel;
        bool reach = false;
        for(auto it=forward.begin(); it!=forward.end(); ++it){
            string word = *it;
            for(auto ch=word.begin(); ch!=word.end(); ++ch){
                char tmp = *ch;
                for(*ch='a'; *ch<='z'; ++(*ch)){
                    if(*ch != tmp) //遍历除自身外的25个字母
                        if(backward.find(word) != backward.end()){
                            reach = true; //走到了末尾
                            isForward ? nexts[*it].push_back(word) : nexts[word].push_back(*it);
                        }
                        else if(!reach && dict.find(word) != dict.end()){
                            nextLevel.insert(word);
                            isForward ? nexts[*it].push_back(word) : nexts[word].push_back(*it);
                        }
                }
            *ch = tmp;
            }
        }
        return reach || findLaddersHelper(backward, nextLevel, dict, nexts, isForward);
    }
     
    void getPath(string beginWord, string &endWord,
                 unordered_map<string, vector<string>> &nexts,
                 vector<string> &path, vector<vector<string>> &paths){
        if(beginWord == endWord)
            paths.push_back(path);
        else
            for(auto it=nexts[beginWord].begin(); it!=nexts[beginWord].end(); ++it){
                path.push_back(*it);
                getPath(*it, endWord, nexts, path, paths);
                path.pop_back();
            }
    }*/
     vector<vector<string> > findLadders(string start, string end, unordered_set<string> &dict) {
        vector<vector<string> > paths;
        vector<string> path(1, start);
        if (start == end) {//首位words相同
            paths.push_back(path);
            return paths;
        }
        unordered_set<string> forward, backward;
        forward.insert(start);
        backward.insert(end);
        unordered_map<string, vector<string> > nexts; //存储路径的矩阵
        bool isForward = false;
        if (findLaddersHelper(forward, backward, dict, nexts, isForward))
            getPath(start, end, nexts, path, paths);
        return paths;
    }
private:
    bool findLaddersHelper(
        unordered_set<string> &forward,
        unordered_set<string> &backward,
        unordered_set<string> &dict,
        unordered_map<string, vector<string> > &nexts,
        bool &isForward) {
        isForward = !isForward; //反转方向标志??
        if (forward.empty())
            return false;
        if (forward.size() > backward.size())
            return findLaddersHelper(backward, forward, dict, nexts, isForward);//从words数较少的一边开始寻路
        for (auto it = forward.begin(); it != forward.end(); ++it) //已放入前向 后向数组中的words从dict去除
            dict.erase(*it);
        for (auto it = backward.begin(); it != backward.end(); ++it)
            dict.erase(*it);
        unordered_set<string> nextLevel;
        bool reach = false; //寻路未完成
        for (auto it = forward.begin(); it != forward.end(); ++it) {//广度遍历前向数组中的每一个分支
            string word = *it;
            for (auto ch = word.begin(); ch != word.end(); ++ch) {
                char tmp = *ch;
                for (*ch = 'a'; *ch <= 'z'; ++(*ch))//遍历除自身外的25个字母
                    if (*ch != tmp)
                        if (backward.find(word) != backward.end()) { //前后向数组成功相接
                            reach = true; //寻路完成
                            isForward ? nexts[*it].push_back(word) : nexts[word].push_back(*it);
                        }
                        else if (!reach && dict.find(word) != dict.end()) { //未到达 且 字典中有需要的words
                            nextLevel.insert(word); //将新产生的分支放入临时数组,用于下次递归调用
                            isForward ? nexts[*it].push_back(word) : nexts[word].push_back(*it);
                        }
                        *ch = tmp;
            }
        }
        return reach || findLaddersHelper(backward, nextLevel, dict, nexts, isForward);
    }
    void getPath(
        string beginWord,
        string &endWord,
        unordered_map<string, vector<string> > &nexts,
        vector<string> &path,
        vector<vector<string> > &paths) {
        if (beginWord == endWord) //走到了,将path中的值压入paths
            paths.push_back(path);
        else
            for (auto it = nexts[beginWord].begin(); it != nexts[beginWord].end(); ++it) {
                path.push_back(*it);
                getPath(*it, endWord, nexts, path, paths);
                path.pop_back(); //每退出一次递归,将该层压入的值弹出
            }
    }
};


leetcode24:word-ladder-ii的更多相关文章

  1. 【leetcode】Word Ladder II

      Word Ladder II Given two words (start and end), and a dictionary, find all shortest transformation ...

  2. 18. Word Ladder && Word Ladder II

    Word Ladder Given two words (start and end), and a dictionary, find the length of shortest transform ...

  3. LeetCode :Word Ladder II My Solution

    Word Ladder II Total Accepted: 11755 Total Submissions: 102776My Submissions Given two words (start  ...

  4. [leetcode]Word Ladder II @ Python

    [leetcode]Word Ladder II @ Python 原题地址:http://oj.leetcode.com/problems/word-ladder-ii/ 参考文献:http://b ...

  5. LeetCode: Word Ladder II 解题报告

    Word Ladder II Given two words (start and end), and a dictionary, find all shortest transformation s ...

  6. [Leetcode Week5]Word Ladder II

    Word Ladder II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/word-ladder-ii/description/ Descripti ...

  7. 126. Word Ladder II(hard)

    126. Word Ladder II 题目 Given two words (beginWord and endWord), and a dictionary's word list, find a ...

  8. leetcode 127. Word Ladder、126. Word Ladder II

    127. Word Ladder 这道题使用bfs来解决,每次将满足要求的变换单词加入队列中. wordSet用来记录当前词典中的单词,做一个单词变换生成一个新单词,都需要判断这个单词是否在词典中,不 ...

  9. [LeetCode] Word Ladder II 词语阶梯之二

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

  10. [Leetcode][JAVA] Word Ladder II

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

随机推荐

  1. python软件安装-Windows

     开发语言: 高级语言:Java.C.PHP.Go.ruby.c++   #字节码 低级语言:C.汇编                                           #机器码 语 ...

  2. 系统编程-文件IO-IO处理方式

    IO处理五种模型 .

  3. IPA的动态库注入+企业重签名过程

    [摘录]之前在进行iOS测试过程中由于要获取一定数据信息,因此需要对原本的安装包进行代码注入并且重新打包安装,因此就需要使用重签名策略,在此进行分享,希望大家可以使用其中的方法来运用到自身的项目中. ...

  4. linux配置定时任务cron/定时服务与自启动

    实现linux定时任务有:cron.anacron.at,使用最多的是cron任务 名词解释 cron--服务名:crond--linux下用来周期性的执行某种任务或等待处理某些事件的一个守护进程,与 ...

  5. 多测师_python基本介绍001

    python 一.python的介绍 python 是一门面向对象,解释型,动态类型语言 面向对象:在python中 一切皆为对象 解释型语言:边解释,边执行, 动态类型:就是检查是在运行才做的. 动 ...

  6. 多测试_常用linux命令_002

    linux 介绍 常用的操作系统(os): windows .dos.android.ios.unix.linux linux系统:是一个免费.开源的操作系统 支持多cpu,多用户,多线程的操作系统, ...

  7. C和C++区别——前置自增与后置自增

    一.先看下面两段完全一样的代码块 /* test.cpp */ int main() { int a = 5; ++a = 7; printf("%d\n", a); return ...

  8. localhost与127.0.0.1与0.0.0.0

    localhost localhost其实是域名,一般系统默认将localhost指向127.0.0.1,但是localhost并不等于127.0.0.1,localhost指向的IP地址是可以配置的 ...

  9. beego log

    package main import ( "github.com/astaxie/beego/logs" _ "xcms/routers" _ "x ...

  10. faker切换user-agent

    import random import requests url = "http://tool.yeves.cn" import faker fake = faker.Faker ...