题目大意

vjudge链接

有n个人围圆桌而坐,每个人有Ai个金币,每个人可以给左右相邻的人一些金币。

若使得最终所有人金币数相等,求最小金币转移数。

数据范围

n<1000001

样例输入

3

100

100

100

4

1

2

5

4

样例输出

0

4

思路

可以算出最后每个人的钱数m为总钱数除以人数n。

比如,1号给2号x枚金币,相当于2号给1号-x枚金币。

所以只要考虑n→n-1,n-1→n-2,……,1→n即可。

设xi为i给i-1的金币数量。

假设i初始有Ai枚金币,最终钱数为m,则Ai-xi+xi+1=M。

设C1=A1-m,C2=C1+A2-m……

则移项得到xi+1=x1-Ci
答案是|x1|+|x1-C1|+……+|x1-Cn-1|的最小值,

因此问题就变成了在数轴上有n个点,找出一个和他们距离和最小的点。

可以得到这个点就是这些数的中位数,排序即可,或者用nth_element。

证明见链

【思维】UVA 11300 Spreading the Wealth的更多相关文章

  1. 数学/思维 UVA 11300 Spreading the Wealth

    题目传送门 /* 假设x1为1号给n号的金币数(逆时针),下面类似 a[1] - x1 + x2 = m(平均数) 得x2 = x1 + m - a[1] = x1 - c1; //规定c1 = a[ ...

  2. UVA.11300 Spreading the Wealth (思维题 中位数模型)

    UVA.11300 Spreading the Wealth (思维题) 题意分析 现给出n个人,每个人手中有a[i]个数的金币,每个人能给其左右相邻的人金币,现在要求你安排传递金币的方案,使得每个人 ...

  3. UVa 11300 Spreading the Wealth(有钱同使)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: "Times New ...

  4. uva 11300 - Spreading the Wealth(数论)

    题目链接:uva 11300 - Spreading the Wealth 题目大意:有n个人坐在圆桌旁,每个人有一定的金币,金币的总数可以被n整除,现在每个人可以给左右的人一些金币,使得每个人手上的 ...

  5. UVA - 11300 Spreading the Wealth(数学题)

    UVA - 11300 Spreading the Wealth [题目描述] 圆桌旁边坐着n个人,每个人有一定数量的金币,金币的总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金 ...

  6. Uva 11300 Spreading the Wealth(递推,中位数)

    Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They ...

  7. UVA 11300 Spreading the Wealth (数学推导 中位数)

    Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They ...

  8. Math - Uva 11300 Spreading the Wealth

    Spreading the Wealth Problem's Link ---------------------------------------------------------------- ...

  9. [ACM_几何] UVA 11300 Spreading the Wealth [分金币 左右给 最终相等 方程组 中位数]

    Problem A Communist regime is trying to redistribute wealth in a village. They have have decided to ...

随机推荐

  1. SpringBoot整合MinIO

    今天因为公司的需求接触到这个东西,我们先来看下MinIO的官网简介 MinIO 是一个基于Apache License v2.0开源协议的对象存储服务.它兼容亚马逊S3云存储服务接口,非常适合于存储大 ...

  2. [leetCode]5. 最长回文子串(DP)

    题目 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 题解 dp.先初始化长度为1和长度为2的串.再依次算长度为3,4,5.... 当找到回文串时,若长度比当 ...

  3. C语言知识汇编

    (20-) 1.局部变量:定义在大括号的变量是局部变量 作用域:从 定义变量到return或者遇到 } 结束为止 include <stdio.h> int main() { int nu ...

  4. springboot之logback配置

    参考了https://blog.csdn.net/hxtxgfzs/article/details/79488163 Spring Boot默认情况下,当使用"Starters" ...

  5. solr综合案例

    1.  综合案例 1.1. 需求 使用Solr实现电商网站中商品信息搜索功能,可以根据关键字.分类.价格搜索商品信息,也可以根据价格进行排序,并且实现分页功能. 界面如下: 1.2分析 开发人员需要的 ...

  6. windows提权之mimikatz

    mimikatz privilege::debug #提权命令 sekurlsa::logonPasswords #抓取密码 winmine::infos #扫雷作弊 lsadump::lsa /pa ...

  7. Docker:四、Docker进阶 Windows Docker IIS 部署

    前面的三篇docker 文档大家看的肯定不过瘾,自己可能也已经上手一试了...不知道有没有发现问题... 哈哈... 我来说说我遇到的问题哦 一.windows docker 镜像越来越大 默认的do ...

  8. explain为mysql关键字,不能作为表字段创建

    在用jpa自动建表时,字段名命名为了explain,发现报实体类与数据库表字段不一致的错,查询才发现explain是mysql的关键字,无法作为表字段建立,特此记录

  9. MySQL中的临时表到底什么是?

    Author:极客小俊 一个专注于web技术的80后 我不用拼过聪明人,我只需要拼过那些懒人 我就一定会超越大部分人! CSDN@极客小俊,原创文章, B站技术分享 B站视频 : Bilibili.c ...

  10. Python-py2和py3读写文本区别

    python2和python3的区别? python 2  str             对应      python3 bytes python 2 uincode            对应   ...