KD树——k=1时就是BST,里面的数学原理还是有不明白的地方,为啥方差划分?
Kd-Tree,即K-dimensional tree,是一棵二叉树,树中存储的是一些K维数据。在一个K维数据集合上构建一棵Kd-Tree代表了对该K维数据集合构成的K维空间的一个划分,即树中的每个结点就对应了一个K维的超矩形区域(Hyperrectangle)。
在介绍Kd-tree的相关算法前,我们先回顾一下二叉查找树(Binary Search Tree)的相关概念和算法。k=1就是BST!
例如,图1中是一棵二叉查找树,其满足BST的性质。
图1 二叉查找树(来源:Wiki)
KD树的构建
kd树构建的伪代码如下图所示(伪代码来自《图像局部不变特性特征与描述》王永明 王贵锦 编著):
再举一个简单直观的实例来介绍k-d树构建算法。假设有6个二维数据点{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},数据点位于二维空间内,如下图所示。为了能有效的找到最近邻,k-d树采用分而治之的思想,即将整个空间划分为几个小部分,首先,粗黑线将空间一分为二,然后在两个子空间中,细黑直线又将整个空间划分为四部分,最后虚黑直线将这四部分进一步划分。
6个二维数据点{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)}构建kd树的具体步骤为:
- 确定:split域=x。具体是:6个数据点在x,y维度上的数据方差分别为39,28.63,所以在x轴上方差更大,故split域值为x;
- 确定:Node-data = (7,2)。具体是:根据x维上的值将数据排序,6个数据的中值(所谓中值,即中间大小的值)为7,所以Node-data域位数据点(7,2)。这样,该节点的分割超平面就是通过(7,2)并垂直于:split=x轴的直线x=7;
- 确定:左子空间和右子空间。具体是:分割超平面x=7将整个空间分为两部分:x<=7的部分为左子空间,包含3个节点={(2,3),(5,4),(4,7)};另一部分为右子空间,包含2个节点={(9,6),(8,1)};
与此同时,经过对上面所示的空间划分之后,我们可以看出,点(7,2)可以为根结点,从根结点出发的两条红粗斜线指向的(5,4)和(9,6)则为根结点的左右子结点,而(2,3),(4,7)则为(5,4)的左右孩子(通过两条细红斜线相连),最后,(8,1)为(9,6)的左孩子(通过细红斜线相连)。如此,便形成了下面这样一棵k-d树:
问题1: 每次对子空间的划分时,怎样确定在哪个维度上进行划分?
最简单的方法就是轮着来,即如果这次选择了在第i维上进行数据划分,那下一次就在第j(j≠i)维上进行划分,例如:j = (i mod k) + 1。想象一下我们切豆腐时,先是竖着切一刀,切成两半后,再横着来一刀,就得到了很小的方块豆腐。
可是“轮着来”的方法是否可以很好地解决问题呢?再次想象一下,我们现在要切的是一根木条,按照“轮着来”的方法先是竖着切一刀,木条一分为二,干净利落,接下来就是再横着切一刀,这个时候就有点考验刀法了,如果木条的直径(横截面)较大,还可以下手,如果直径较小,就没法往下切了。因此,如果K维数据的分布像上面的豆腐一样,“轮着来”的切分方法是可以奏效,但是如果K维度上数据的分布像木条一样,“轮着来”就不好用了。因此,还需要想想其他的切法。
如果一个K维数据集合的分布像木条一样,那就是说明这K维数据在木条较长方向代表的维度上,这些数据的分布散得比较开,数学上来说,就是这些数据在该维度上的方差(invariance)比较大,换句话说,正因为这些数据在该维度上分散的比较开,我们就更容易在这个维度上将它们划分开,因此,这就引出了我们选择维度的另一种方法:最大方差法(max invarince),即每次我们选择维度进行划分时,都选择具有最大方差维度。
摘自:http://blog.csdn.net/junshen1314/article/details/51121582
KD树——k=1时就是BST,里面的数学原理还是有不明白的地方,为啥方差划分?的更多相关文章
- KD树的极简单笔记(待后续更新)
今天(18.5.4)室友A突然问我算法怎么入门,兴奋之下给他安利了邓公的<数据结构>,然而他接着又问我能不能两周内快速入门,毕竟打算搞Machine Learning,然后掏出手机看了下他 ...
- 02-17 kd树
目录 kd树 一.kd树学习目标 二.kd树引入 三.kd树详解 3.1 构造kd树 3.1.1 示例 3.2 kd树搜索 3.2.1 示例 四.kd树流程 4.1 输入 4.2 输出 4.3 流程 ...
- k临近法的实现:kd树
# coding:utf-8 import numpy as np import matplotlib.pyplot as plt T = [[2, 3], [5, 4], [9, 6], [4, 7 ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- k近邻法的C++实现:kd树
1.k近邻算法的思想 给定一个训练集,对于新的输入实例,在训练集中找到与该实例最近的k个实例,这k个实例中的多数属于某个类,就把该输入实例分为这个类. 因为要找到最近的k个实例,所以计算输入实例与训练 ...
- <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...
- kd树 求k近邻 python 代码
之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻, ...
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...
- 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...
随机推荐
- html中设置浏览器解码方式
通过添加一行标签: <meta http-equiv="Content-Type" content="text/html; charset=utf-8"& ...
- Caffe2:段错误(核心 已转储)
测试Caffe的时候, cd ~ && python -c 'from caffe2.python import core' 2>/dev/null && ech ...
- Java数组数据类型
Java数组数据类型 数组是多个相同类型的数据的组合,数组中的元素可以是任何类型的数据: 一维数组 package com.ahabest.array; public class ArratTest ...
- 【Linq】标准查询操作符
A.1 聚合 聚合操作符(见表A-1),所有的结果只有一个值而不是一个序列. Average 和 Sum 针对数值 (任何内置数值类型)序列或使用委托从元素值转换为内置数值类型的元素序列. Min 和 ...
- 浅谈 extern "C"
今天上课实在无聊,就看了看 extern "C" 的作用,看了以后对它有了一点点理解,在这里给大家分享一下(本菜鸡水平有限,如若有说得不对的地方,还望大家指出). extern 关 ...
- 环状序列(Circular Sequence, ACM/ICPC Seoul 2004, UVa1584)
长度为n的环状串有n种表示法,分别为从某 个位置开始顺时针得到.例如,图3-4的环状串 有10种表示: CGAGTCAGCT,GAGTCAGCTC,AGTCAGCTCG等. 在这些表示法中,字典序最小 ...
- 非常简单的Python HTTP服务
如果你急需一个简单的Web Server,但你又不想去下载并安装那些复杂的HTTP服务程序,比如:Apache,ISS等.那么, Python 可能帮助你.使用Python可以完成一个简单的内建 HT ...
- 解析特殊格式的xml到map
由于项目特殊,需要解析的xml文档样式特别,所以自己写了一个解析特殊xml的方法 先提供xml样式 <?xml version="1.0" encoding="UT ...
- C/C++ uchar的一个有趣用法
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51377490 图像处理中常常使用的一种 ...
- fzu 2128
第一组实例 aaaa 2 aa aa 第二组 a 1 c 第三组 abcdef 2 abcd bcd 第四组 abcdef 2 abcd bcde 第五组 aaaa 2 a aa 第六组 lgcstr ...