UVA 11426 GCD - Extreme (II) (数论|欧拉函数)
题意:求sum(gcd(i,j),1<=i<j<=n)。
思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和
问题转化为了求f(n),由于小于n的数与n的gcd一定是n的因数,
所以f(n)能够表示为sum(i)*i,当中sum(i)表示全部和n的gcd为i的数的数量,我们要求满足gcd(a, n) = i,的个数,能够转化为求gcd(a/i, n/i) = 1的个数,
于是能够发现sun(i) = phi(n/i),这里枚举n的因数的方法仿照素数筛法,时间复杂度为O(nlogn).
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<ctime>
#define eps 1e-6
#define LL long long
#define pii (pair<int, int>)
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std; const int maxn = 5000000;
//const int INF = 0x3f3f3f3f;
int n;
LL ans[5000000]; int phi[maxn];
void phi_table(int n) {
for(int i = 2; i <= n; i++) phi[i] = 0;
phi[1] = 1;
for(int i = 2; i <= n; i++) if(!phi[i])
for(int j = i; j <= n; j+=i) {
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i-1);
}
} void init() {
phi_table(4000000);
ans[1] = 0;
for(int i = 1; i <= 4000000; i++) {
for(int j = i*2; j <= 4000000; j+=i) {
ans[j] += phi[j/i]*i;
}
}
for(int i = 2; i <= 4000000; i++) ans[i] += ans[i-1];
} int main() {
//freopen("input.txt", "r", stdin);
init(); //cout << phi[3] << endl;
while(scanf("%d", &n) == 1 && n) {
cout << ans[n] << endl;
}
return 0;
}
UVA 11426 GCD - Extreme (II) (数论|欧拉函数)的更多相关文章
- UVA 11426 GCD - Extreme (II) (欧拉函数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Problem JGCD Extreme (II)Input: Standard ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)题解
思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...
- UVA 11426 - GCD - Extreme (II) (数论)
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...
- GCD - Extreme (II) (欧拉函数妙用)
https://cn.vjudge.net/problem/UVA-11426 题意:求 解题思路:我们可以定义一个变量dis[n],dis[n]意为1~(n-1)与n的gcd(最大公约数)的总和,那 ...
- UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...
- UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)
Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...
- uva 11426 GCD - Extreme (II) (欧拉函数打表)
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...
- UVA 11426 - GCD - Extreme (II) 欧拉函数-数学
Given the value of N, you will have to find the value of G. The definition of G is given below:G =i< ...
- UVA 11426 GCD - Extreme (II) 欧拉函数
分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...
随机推荐
- ExcelToHtmlTable转换算法:将Excel转换成Html表格并展示(项目源码+详细注释+项目截图)
功能概述 Excel2HtmlTable的主要功能就是把Excel的内容以表格的方式,展现在页面中.Excel的多个Sheet对应页面的多个Tab选项卡.转换算法的难点在于,如何处理行列合并,将Exc ...
- 数据库ifnull方法
IFNULL(expr1,expr2)如果expr1不是NULL,IFNULL()返回expr1,否则它返回expr2.IFNULL()返回一个数字或字符串值.例如: ifnull() 如果sum(t ...
- Java基础学习总结(59)——30 个java编程技巧
1.return 一个空的集合,而不是 null 如果一个程序返回一个没有任何值的集合,请确保一个空集合返回,而不是空元素.这样你就不用去写一大堆 "if else" 判断null ...
- jvm 堆、栈 、方法区概念和联系
一.三者联系 1.堆:解决数据的存储问题( 即 数据怎么放,放到哪 ). 2.栈:解决程序运行的问题( 即 程序如何执行,或者说如何处理数据 ). 3.方法区:辅助堆栈的一块永久区,解决堆栈信息的产生 ...
- POJ——T 3159 Candies
http://poj.org/problem?id=3159 Time Limit: 1500MS Memory Limit: 131072K Total Submissions: 33328 ...
- intellij idea 打开两个 terminal
intellij idea 打开两个 terminal alt+f12可以打开terminal,在terminal窗口左侧点击绿色的加号,就可以又打开一个terminal,用tab标签展示:
- Struts2中的异步提交(ajaxfileupload异步上传(图片)插件的使用)
server端採用struts2来处理文件上传. 所需环境: jquery.js ajaxfileupload.js struts2所依赖的jar包 及struts2-json-plugin-2.1. ...
- 16、sockect
一.局域网因特网 服务器是指提供信息的计算机或程序,客户机是指请求信息的计算机或程序,而网络用于连接服务器与客户机,实现两者之间的通信.但有时在某个网络中很难将服务器和客户机区分开.我们通常说的“局域 ...
- nyoj--914--Yougth的最大化(二分查找)
Yougth的最大化 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 Yougth现在有n个物品的重量和价值分别是Wi和Vi,你能帮他从中选出k个物品使得单位重量的价值最 ...
- 递归版快速排序-JS代码
"use strict" var arr1=[11,21,3,4,0]; function qSort(arr){ var mid,left,right,len,i,j,empty ...