Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 7410 Accepted Submission(s): 3127

Problem Description

Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player’s last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

Input

Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.

Output

For each position: If the described position is a winning position print a ‘W’.If the described position is a losing position print an ‘L’. Print a newline after each test case.

Sample Input

2 2 5 3 2 5 12 3 2 4 7 4 2 3 7 12 5 1 2 3 4 5 3 2 5 12 3 2 4 7 4 2 3 7 12 0

Sample Output

LWW

WWL

【题目链接】:http://acm.hdu.edu.cn/showproblem.php?pid=1536

【题解】

/*
s是个集合!
每次只能拿走s集合里面的数字大小的个数;
它没有说是有序的..
所以从小到大枚举不能直接break;(先排序就可以了);
算出每组S的对应的sg函数(0..10000);
然后看看所有的h的异或值是不是0,是0就先手输;
否则先手赢;
子游戏的sg函数是能够叠加的(用抑或叠加)就变成组合博弈了(听起来很高端吧~);
*/

【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rei(x) scanf("%d",&x) const int MAXK = 1e2+10;
const int MAXH = 1e4+10; int k,s[MAXK],sg[MAXH],m,l,h[MAXK];
bool flag[MAXK]; int main()
{
//freopen("D:\\rush.txt","r",stdin);
rei(k);
while (k!=0)
{
rep1(i,1,k)
rei(s[i]);
sort(s+1,s+1+k);
sg[0] = 0;
rep1(i,1,10000)
{
rep1(j,0,100)
flag[j] = false;
for (int j = 1;i-s[j]>=0 && j<=k;j++)
flag[sg[i-s[j]]] = true;
rep1(j,0,100)
if (!flag[j])
{
sg[i] = j;
break;
}
}
rei(m);
rep1(i,1,m)
{
int temp = 0;
rei(l);
rep1(j,1,l)
{
rei(h[j]);
temp = temp^sg[h[j]];
}
if (temp == 0)
printf("L");
else
printf("W");
}
puts("");
rei(k);
}
return 0;
}

【hdu 1536】S-Nim的更多相关文章

  1. 【数位dp】【HDU 3555】【HDU 2089】数位DP入门题

    [HDU  3555]原题直通车: 代码: // 31MS 900K 909 B G++ #include<iostream> #include<cstdio> #includ ...

  2. 【HDU 5647】DZY Loves Connecting(树DP)

    pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...

  3. -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】

    [把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...

  4. 【HDU 2196】 Computer(树的直径)

    [HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...

  5. 【HDU 2196】 Computer (树形DP)

    [HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...

  6. 【HDU 5145】 NPY and girls(组合+莫队)

    pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...

  7. 【hdu 3032】Nim or not Nim?

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...

  8. 【HDU 2176】 取(m堆)石子游戏

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2176 [算法] Nim博弈 当石子数异或和不为0时,先手必胜,否则先手必败 设石子异或和为S 如果 ...

  9. 【hdu 4315】Climbing the Hill

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...

随机推荐

  1. 18. springboot整合jsp

    转自:https://blog.csdn.net/u012562943/article/details/51836729

  2. Android ProGuard代码混淆技术详解

    前言     受<APP研发录>启发,里面讲到一名Android程序员,在工作一段时间后,会感觉到迷茫,想进阶的话接下去是看Android系统源码呢,还是每天继续做应用,毕竟每天都是画UI ...

  3. Vue自定义组件

  4. amazeui学习笔记--css(HTML元素2)--代码Code

    amazeui学习笔记--css(HTML元素2)--代码Code 一.总结 1.行内代码:code标签<code> 2.代码片段:pre标签<pre> 3.限制代码块高度:添 ...

  5. VMWare中的三种联网模式图解

    网络基础及局域网配置 1.简单的局域网结构 2.VMWare中的三种联网模式 NAT模式 桥接模式 VMnet1

  6. Java 泛型-泛型类、泛型方法、泛型接口、通配符、上下限

    泛型: 一种程序设计语言的新特性,于Java而言,在JDK 1.5开始引入.泛型就是在设计程序的时候定义一些可变部分,在具体使用的时候再给可变部分指定具体的类型.使用泛型比使用Object变量再进行强 ...

  7. javascript面对对象编程 之继承

    上一篇博客中为大家介绍了javascript面向对象编程原则的封装,今天为大家介绍继承.在javascript中没有类的概念,全部不能像c#.java语言那样.直接的用类去继承类.比方如今有比方.如今 ...

  8. wepy小程序实现选项卡

    先上效果: 本文是基于前面几篇文章: 使用wepy开发微信小程序商城第一篇:项目初始化 使用wepy开发微信小程序商城第二篇:路由配置和页面结构 使用wepy开发微信小程序商城第三篇:购物车(布局篇) ...

  9. 【AtCoder ABC 075 B】Minesweeper

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 模拟,把#换成1 八个方向加一下就好. [代码] #include <bits/stdc++.h> using name ...

  10. Nginx系列(二)--模块化

    高度模块化的设计设Nginx架构的基础. 在Nginx中,除了少量的核心代码,其它一切皆为模块.模块化设计具有下面特点: 1.高度抽象的模块接口 2.灵活性 3.配置模块的设计使Nginx提供了高可配 ...