Problem Description
In computer science, the longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible.
This subsequence is not necessarily contiguous, or unique.

---Wikipedia



Today, LIS takes revenge on you, again. You mission is not calculating the length of longest increasing subsequence, but the length of the second longest increasing subsequence.

Two subsequence is different if and only they have different length, or have at least one different element index in the same place. And second longest increasing subsequence of sequence S indicates the second largest one while sorting all the increasing subsequences
of S by its length.
 
Input
The first line contains a single integer T, indicating the number of test cases.




Each test case begins with an integer N, indicating the length of the sequence. Then N integer Ai follows, indicating the sequence.



[Technical Specification]

1. 1 <= T <= 100

2. 2 <= N <= 1000

3. 1 <= Ai <= 1 000 000 000
 
Output
For each test case, output the length of the second longest increasing subsequence.
 
Sample Input
3
2
1 1
4
1 2 3 4
5
1 1 2 2 2
 
Sample Output
1
3
2
Hint
For the first sequence, there are two increasing subsequence: [1], [1]. So the length of the second longest increasing subsequence is also 1, same with the length of LIS.
 
Source
 
Recommend

參考链接:http://blog.csdn.net/acvay/article/details/40686171

比赛时没有读懂题目開始做结果被hack了,后来一直想nlogn的方法,无果。以后应该会想出来,以后再贴那种方法代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector> #define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1) #define eps 1e-8
using namespace std;
#define N 10005 int a[N],dp[N],c[N];
int n; int main()
{
int i,j,t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&a[i]); int ans=0;
for(i=1;i<=n;i++)
{
dp[i]=1;
c[i]=1;
for(j=1;j<i;j++)
{
if(a[i]<=a[j]) continue; if(dp[j]+1>dp[i])
{
dp[i]=dp[j]+1;
c[i]=c[j];
}
else
if(dp[j]+1==dp[i])
c[i]=2;
}
if(dp[i]>ans)
ans=dp[i];
}
j=0;
for(i=1;i<=n;i++)
if(dp[i]==ans)
{
j+=c[i];
if(j>1)
break;
}
if(j>1)
printf("%d\n",ans);
else
printf("%d\n",ans-1);
}
return 0;
}

HDU 5078 Revenge of LIS II(dp LIS)的更多相关文章

  1. HDU 1002 A + B Problem II(AC代码)

    #include <stdio.h> #include <string.h> #define MAX 1009 int main() { },b[MAX]={}; ,z=,r= ...

  2. HDU 1087 Super Jumping! Jumping! Jumping! (DP+LIS)

    题意:给定一个长度为n的序列,让你求一个和最大递增序列. 析:一看,是不是很像LIS啊,这基本就是一样的,只不过改一下而已,d(i)表示前i个数中,最大的和并且是递增的, 如果 d(j) + a[i] ...

  3. HDU 5831 Rikka with Parenthesis II (栈+模拟)

    Rikka with Parenthesis II 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5831 Description As we kno ...

  4. LIS问题(DP解法)---poj1631

    题目链接:http://poj.org/problem?id=1631 这个题题目有些难看懂hhh,但实质就是求LIS--longest increasing sequence. 以下介绍LIS的解法 ...

  5. HDU——1027Ignatius and the Princess II(next_permutation函数)

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  6. HDU 4669 Mutiples on a circle (DP , 统计)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出一个环,每个点是一个数字,取一个子串,使 ...

  7. HDU 1207 汉诺塔II (递推)

    经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘.上 ...

  8. Unique Paths II (dp题)

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  9. HDU 1002 A + B Problem II (大数加法)

    题目链接 Problem Description I have a very simple problem for you. Given two integers A and B, your job ...

随机推荐

  1. oc2---类

    // main.m // 第一个OC类,OC中的类其实本质就是一个结构体, 所以p这个指针其实就是指向了一个结构体,创建一个对象就是创建一个结构体指针, #import <Foundation/ ...

  2. linux下的开源移动图像监测程序--motion编译与配置【转】

    本文转载自:http://www.cnblogs.com/qinyg/p/3355707.html 前几天在网上偶然看到一篇博客,是利用linxu下的开源的motion搭建嵌入式视频动态监控系统,感觉 ...

  3. Android5.1 在init.rc 中添加自己的服务【转】

    本文转载自:http://blog.csdn.net/VOlsenBerg/article/details/71085610 我有一个需求就是在Android系统开机的时候把一个配置文件放到Andro ...

  4. RAP开发入门-布局管理

    布局类继承关系 FillLayout  new FillLayout(SWT.VERTICAL/HORIZONTAL)设置竖直/水平填充 RowLayout wrap折行显示.pack自适应布局(布局 ...

  5. Arduino UNO R3

    Arduino 常见型号 当然还有 LilyPad,附图: 最常见的自然是UNO,最新版是第三版R3: 国内也有一些改进的板子.我用的是一般的板子,拿到货也只能默默了. 简介 The Uno is a ...

  6. Stanford概率图模型: 第一讲 有向图-贝叶斯网络

    原文链接(系列):http://blog.csdn.net/yangliuy/article/details/8067261 概率图模型(Probabilistic Graphical Model)系 ...

  7. C# 遍历对象下的 属性

    foreach (System.Reflection.PropertyInfo p in users.GetType().GetProperties()) { var xx = p.Name; var ...

  8. setTimeout()传带有参数的函数

    w3cshool里的解释:setTimeout() 方法用于在指定的毫秒数后调用函数或计算表达式,语法:setTimeout(code,millisec). 也就是说,第一个参数可以是字符串形式的Ja ...

  9. Delphi中实现文件拷贝的三种方法

    1.调用API函数procedure CopyFile(FromFileName,ToFileName:string);varf1,f2:file;BeginAssignFile(f1,FromFil ...

  10. 路飞学城Python-Day107

    88-Ajax简介 Ajax是前端的JS技术,目前向服务器发送请求是通过1.向浏览器的地址栏发送请求的方式:2.form表单的请求方式是两种get和post方式:3.a标签的href属性对接地址 是一 ...