传送门

Solution

把状态都记上暴力转移即可

Code

//By Menteur_Hxy
#include <queue>
#include <cmath>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define Re register
#define Ms(a,b) memset(a,(b),sizeof(a))
#define Fo(i,a,b) for(Re int i=(a),_=(b);i<=_;i++)
#define Ro(i,a,b) for(Re int i=(b),_=(a);i>=_;i--)
using namespace std;
typedef long long LL;
typedef pair<int,int> PII; inline LL read() {
LL x=0,f=1;char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int N=51;
int n,m,t,ans;
int f[N][N][N*N][2];
char s[N]; int main() {
n=read(),m=read(),t=read();
Fo(i,1,n) {
scanf("%s",s+1);
Fo(j,1,m) Fo(k,1,t) {
if(j==1) {
f[i][j][k][0]=max(f[i-1][m][k-1][0],f[i-1][m][k-1][1]);
f[i][j][k][1]=f[i][j][k][0]+1; } else {
if(s[j]==s[j-1]) {
f[i][j][k][1]=max(f[i][j-1][k][1],f[i][j-1][k-1][0])+1;
f[i][j][k][0]=max(f[i][j-1][k][0],f[i][j-1][k-1][1]);
} else {
f[i][j][k][1]=max(f[i][j-1][k-1][1],f[i][j-1][k][0])+1;
f[i][j][k][0]=max(f[i][j-1][k-1][0],f[i][j-1][k][1]);
}
}
ans=max(ans,max(f[i][j][k][0],f[i][j][k][1]));
}
}
printf("%d",ans);
return 0;
}

[luogu4158 SCOI2009] 粉刷匠(dp)的更多相关文章

  1. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  2. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  3. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  4. BZOJ1296: [SCOI2009]粉刷匠 DP

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  5. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  6. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

  7. 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)

    [SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...

  8. 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠

    P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...

  9. bzoj1296: [SCOI2009]粉刷匠(DP)

    1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...

随机推荐

  1. 【cocos2d-x 3.7 飞机大战】 决战南海I (十) 游戏主场景

    主场景要包括其它类的头文件 #include "cocos2d.h" #include "MyPlane.h" #include "Bullet.h& ...

  2. 人见人爱A+B(杭电2033)

    /*人见人爱A+B Problem Description HDOJ上面已经有10来道A+B的题目了,相信这些题目以前是大家的最爱,希望今天的这个A+B能给大家带来好运.也希望这个题目能唤起大家对AC ...

  3. Why is try {…} finally {…} good; try {…} catch{} bad?

    http://stackoverflow.com/questions/128818/why-is-try-finally-good-try-catch-bad The big difference i ...

  4. PCB MS SQL 小写转大写

    由于SQL Server允许为小写进入 ,导致数据库中存在小写,在数据集成到MES或ERP时报错,Oracle要求大写导致, 需转换为大写,可通过以下语句,查询所有小写数据,再更新.

  5. position中的absolute、fixed区别

    absolute: 绝对定位,相对于body.   fixed: 固定定位,相对于浏览器视窗,不随滚动条的滚动而滚动. 这两个属性概念比较模糊,一般在做左边列表菜单,右边内容区域的时候会用到这样的定位 ...

  6. 5.30dao-service-controller层,mybatis自动生成。(获取根据id主键获取指定详细数据)

    获取权限详细数据:(参考)                    1.controller:1.注入Servcie调用方法findConsumerById(参数是id);               ...

  7. Asp.net MVC4 Step By Step(4)-使用Ajax

    Ajax技术就是利用Javascript和XML技术实现这样的效果, 可以向Web服务器发送异步请求, 返回更新部分页面的数据, 而不需要全部更新整个页面. Ajax请求两种类型的内容, 一种是服务端 ...

  8. Django学习案例一(blog):三. 模型生成数据

    1. 什么是模型models Django中以创建类的形式来创建数据表. 在编写代码的过程中,所有对数据库的操作,都是对类和类的对象进行操作. ORM对象关系映射(Object relation ma ...

  9. Android RxVolley = Volley + RxJava + OkHttp

    Github:https://github.com/kymjs/RxVolley RxVolley使用文档 V1.0:http://rxvolley.mydoc.io/ 一.RxVolley使用指南 ...

  10. android黑科技系列——Android中新型安全防护策略

    一.前言 最近有一个同学,发给我一个设备流量访问检测工具,但是奇怪的是,他从GP上下载下来之后安装就没有数据了,而在GP上直接安装就可以.二次打包也会有问题.所以这里就可以判断这个app应该是有签名校 ...