传送门

Description

小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M)。

小B 家住在西南角,学校在东北角。现在有T 个路口进行施工,小B 不能通过这些路口。小B 喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走;而小B又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条。由于答案可能很大,所以小B 只需要让你求出路径数mod P 的值。

Input

第一行为四个整数N、M、T、P。

接下来的T 行,每行两个整数,表示施工的路口的坐标。

Output

一行一个整数,表示路径数mod P 的值。

Sample Input

3 4 3 1019663265

3 0

1 1

2 2

Sample Output

8

HINT

Solution

f[i]表示从(0,0)到第i个施工点的可行路径数最终答案为\(f[T+1]\) (设第T+1个为(n,m))

排序后每次用全部路径数-到中间某一个施工点(j)的路径数*j到i的路径数

Code

//By Menteur_Hxy
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define x first
#define y second
#define int long long
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define R(i,a,b) for(register int i=(b);i>=(a);i--)
using namespace std;
typedef pair<int,int> PII; int read() {
int x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int T=210,mod[5]={1000003,3,5,6793,10007},MOD=1019663265;
bool flag;
int f[T],fac[5][1000010],inv[5][1000010],d[5];
PII da[T]; int qpow(int a,int b,int p) {
int t=1;
while(b) {
if(b&1) t=t*a%p;
a=a*a%p; b>>=1;
}
return t;
} int lucas(int n,int m,int p) {
if(n<m) return 0;
if(n<mod[p]&&m<mod[p]) return fac[p][n]*inv[p][m]%mod[p]*inv[p][n-m]%mod[p];
return lucas(n/mod[p],m/mod[p],p)*lucas(n%mod[p],m%mod[p],p)%mod[p];
} int C(int n,int m) {
if(!flag) return lucas(n,m,0);
int ans=0;
F(i,1,4) ans=(ans+MOD/mod[i]*qpow(MOD/mod[i],mod[i]-2,mod[i])%MOD*lucas(n,m,i)%MOD)%MOD;
return ans;
} signed main() {
int n=read(),m=read(),t=read(),p=read(); flag=(p==MOD);
F(i,0,4) {
fac[i][0]=1;
F(j,1,mod[i]-1) fac[i][j]=fac[i][j-1]*j%mod[i];
inv[i][mod[i]-1]=qpow(fac[i][mod[i]-1],mod[i]-2,mod[i]);
R(j,-1,mod[i]-2) inv[i][j]=inv[i][j+1]*(j+1)%mod[i];
}
F(i,1,t) {int a=read(),b=read();da[i]=PII(a,b);} da[++t].x=n,da[t].y=m;
sort(da+1,da+1+t);
F(i,1,t) {
f[i]=C(da[i].x+da[i].y,da[i].x);
F(j,1,i-1) if(da[j].y<=da[i].y)
f[i]=(f[i]-f[j]*C(da[i].x+da[i].y-da[j].x-da[j].y,da[i].x-da[j].x)%p+p)%p;
}
printf("%lld",f[t]);
return 0;
}

[luogu4478 BJWC2018] 上学路线 (容斥原理+拓展lucas)的更多相关文章

  1. 洛谷 P4478 [BJWC2018]上学路线

    洛谷 P4478 [BJWC2018]上学路线 原题 神仙题orz,竟然没有1A....容斥+卢卡斯+crt?? 首先用容斥做,记\(f[i][0/1]\)表示到i号点经过了奇数/偶数个点的方案数,因 ...

  2. BJWC2018上学路线

    题目描述 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B 喜欢走最短的 ...

  3. [BJWC2018]上学路线

    Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...

  4. BZOJ3782 上学路线 【dp + Lucas + CRT】

    题目链接 BZOJ3782 题解 我们把终点也加入障碍点中,将点排序,令\(f[i]\)表示从\((0,0)\)出发,不经过其它障碍,直接到达\((x_i,y_i)\)的方案数 首先我们有个大致的方案 ...

  5. P4478 [BJWC2018]上学路线

    Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...

  6. Luogu P4478 [BJWC2018]上学路线 卢卡斯+组合+CRT

    首先,从$(0,0)$走到$(n,m)$的方案数是$ C_{n+m}^n$,可以把走的方向看作一种序列,这个序列长$ n+m$ ,你需要从中任取$n$个位置,让他向右走: 然后就是如何处理不能走的点: ...

  7. 【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理

    题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的 ...

  8. BZOJ 3782: 上学路线 [Lucas定理 DP]

    3782: 上学路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 192  Solved: 75[Submit][Status][Discuss] ...

  9. bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp

    LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=10000 ...

随机推荐

  1. Cocos2d-x 开发神器cococreator使用介绍

    Cocos2d-x 开发神器cococreator使用介绍 本篇博客小巫给大家推荐一个开发神器,你还在为搭建Cocos2d-x开发环境而头痛么.还在为平台移植问题而困扰么,我想大家都想更加高速得进行开 ...

  2. 升级到VS2013常见问题

    问题1: Building an MFC project for a non-Unicode character set is deprecated 解决方法: 用于多字节字符编码 (MBCS) 的 ...

  3. cocos2d-x 3.1.1 学习笔记[16] Particle 粒子效果

    //plist文件中面有粒子效果的各种參数 //textureFileName相应着使用粒子的图片 auto particle = ParticleSystemQuad::create("s ...

  4. pass an instance of class to TestCase as parameter

    use testcasesource instead https://stackoverflow.com/questions/4220943/how-to-pass-dynamic-objects-i ...

  5. @Transaction 无效

    上班的时候碰到这个问题,看了一些博客写的,都试了一遍解决方案,发现结果还是不行, 最后突然发现我的配置顺序和网上的有些许不同,就改了下,发现成功了,特此打桩纪念一下. 一.先说一下基本用法: 1. @ ...

  6. java的list类

    java的list类 目录: list中添加,获取,删除元素: list中是否包含某个元素: list中根据索引将元素数值改变(替换): list中查看(判断)元素的索引: 根据元素索引位置进行的判断 ...

  7. C#如何读写和创建INI文件(经典)转

    C#如何读写和创建INI文件 分类: c#程序设计2011-11-27 20:42 4935人阅读 评论(2) 收藏 举报 inic#stringbuffernullfile 在做项目过程中,有时需要 ...

  8. 杂项-Java:自定义标签

    ylbtech-杂项-Java:自定义标签 1.返回顶部 1. 一般我们说自定义标签是指JSP自定义标签.自定义标签在功能上逻辑上与javaBean 类似,都封装Java 代码.自定义标签是可重用的组 ...

  9. 后台传list,前台接受

    @RequestMapping("/page1") public ModelAndView editSharing(Integer id) { ModelAndView mav=n ...

  10. xml转换成数组array

    直接上代码,成功转换 if($data){ //返回来的是xml格式需要转换成数组再提取值,用来做更新 $startnum = strpos($data,"<xml>" ...