Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 12451  Solved: 5407
[Submit][Status][Discuss]

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

HINT

 

Source

感觉自己一直学的是假的斜率优化

推荐一篇写的比较好的博客

https://www.cnblogs.com/Paul-Guderian/p/7259491.html

#include<cstdio>
#include<cstring>
#include<bitset>
#include<cmath>
#include<algorithm>
#define int long long
//#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<23,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
const int MAXN=1e6+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N,L;
int Q[MAXN],S[MAXN],f[MAXN];
int sqr(int x){return x * x;}
double X(int x){return S[x] + L;}
double Y(int x){return f[x] + sqr( (S[x] + L - ) );}
double slope(int x,int y){return (Y(y) - Y(x)) / (X(y) - X(x));}
main()
{
//freopen("a.in","r",stdin);
//freopen("b.out","w",stdout);
N=read(),L=read();L++;
for(int i=;i<=N;i++) S[i]=read(),S[i]+=S[i-];
for(int i=;i<=N;i++) S[i]+=i;
int h=,t=;
for(int i=;i<=N;i++)
{
while(h<t&&slope(Q[h],Q[h+])<*S[i]) h++;
int x=Q[h];
f[i]=f[x]+sqr(S[i]-S[x]-L);
while(h<t&&slope(Q[t-],Q[t])>slope(Q[t-],i)) t--;
Q[++t]=i;
}
printf("%lld",f[N]);
return ;
}

BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  3. [HNOI2008]玩具装箱TOY --- DP + 斜率优化 / 决策单调性

    [HNOI2008]玩具装箱TOY 题目描述: P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京. 他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器 ...

  4. 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...

  5. bzoj1010: [HNOI2008]玩具装箱toy(斜率优化DP)

    Orz CYC帮我纠正了个错误.斜率优化并不需要决策单调性,只需要斜率式右边的式子单调就可以了 codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i- ...

  6. [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...

  7. 1010: [HNOI2008]玩具装箱toy [dp][斜率优化]

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  8. BZOJ1010 [HNOI2008]玩具装箱toy 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8687797.html 题目传送门 - BZOJ1010 题意 一个数列$C$,然后把这个数列划分成若干段. 对于 ...

  9. BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)

    题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...

随机推荐

  1. 新浪某个tab 页模仿

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  2. C# Cookies设置和读取

    public ActionResult Index() { #region 写入Cookies HttpCookie cookie = new HttpCookie("CookieName& ...

  3. 关于Arrays协助类中的排序方法

    sort方法是优化的快速排序,不稳定. paralleSort是多线程排序,稳定,但是有长度限制.

  4. 09 Django组件之用户认证组件

    没有学习Django认证组件之前使用装饰器方法 from django.shortcuts import render, HttpResponse, redirect from app01.MyFor ...

  5. hadoop 安装问题总结

    安装启动步骤  [英语好的,直接手把手跟着来] http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/Sing ...

  6. 重写servlet,可以获取不同的方法

    public class BaseServlet extends HttpServlet { @Override public void service(HttpServletRequest requ ...

  7. eoLinker上线两周年+ AMS V4.0 发布:全新UI界面,带来领先的API开发管理解决方案!

    2018年7月,eoLinker 发布了<eoLinker AMS 2018年年中用户调研问卷>,前后经历一周的时间,共收集到超过1000份有效调查问卷.超过300个有效改进意见. eoL ...

  8. apicloud 注意事项

    页面布局时头部和内容一定要分开,状态栏寖入式要用.可以用api.sendEvent广播出去,api.addlisterten监听. api.openWin打开页面会有黑色闪屏,加bgColor:'#f ...

  9. eas中删除原来的监听事件添加新的监听事件

    kdtEntrys.removeKDTEditListener(kdtEntrys.getListeners(KDTEditListener.class)[0]);  kdtEntrys.addKDT ...

  10. 共享内存、网络(day13)

    一.共享内存 .获取一个键值 ftok() .使用键值获取共享内存的id shmget() #include <sys/ipc.h> #include <sys/shm.h> ...