思路:

(是不是只有我作大死写了个分块)

up[i][j]表示从第i块开始到第j个位置 上升的最大值

down[i][j]同理

left_up[i]表示从第i块开始能够上升的最长长度

left_down[i]同理

right_up[i]表示从第i块结尾上升的最长长度

right_down[i]同理

然后就是各种恶心的分类讨论

(见代码吧,,,,,,)

嗯这道题还可以差分以后线段树维护>0的最长长度(左max 右max 区间max)

//By SiriusRen
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=,inf=0x3f3f3f3f;
int n,q,l,r,a[N],block[N],up[][N],down[][N],left_up[],left_down[],right_up[],right_down[];
int main(){
scanf("%d",&n);int Block=sqrt(n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=n;i++)block[i]=(i-)/Block+;
for(int i=;i<=block[n];i++){
int temp_up=,temp_down=,f_up=,f_down=;
for(int j=lower_bound(block+,block++n,i)-block;j<=n;j++){
up[i][j]=max(up[i][j-],temp_up),down[i][j]=max(temp_down,down[i][j-]);
if(!f_down)left_down[i]=temp_down;
if(!f_up)left_up[i]=temp_up;
if(a[j+]>a[j])temp_up++,temp_down=,f_down=;
else if(a[j+]<a[j])temp_down++,temp_up=,f_up=;
else temp_up++,temp_down++;
}
}
for(int i=;i<=block[n];i++){
int temp=lower_bound(block+,block++n,i)-block,j=upper_bound(block+,block++n,i)-block-,temp_up=,temp_down=;
for(;block[j]==block[temp];j--){
right_up[i]=max(right_up[i],temp_up),right_down[i]=max(right_down[i],temp_down);
if(a[j-]>a[j])temp_up++,temp_down=-inf;
else if(a[j-]<a[j])temp_down++,temp_up=-inf;
else temp_up++,temp_down++;
}
}
scanf("%d",&q);
while(q--){
scanf("%d%d",&l,&r);
if(block[l]==block[r]){
int ans=;
int temp_up=,temp_down=;
for(int j=l;j<=r;j++){
ans=max(ans,max(temp_up,temp_down));
if(a[j+]>a[j])temp_up++,temp_down=;
else if(a[j+]<a[j])temp_down++,temp_up=;
else temp_up++,temp_down++;
}
printf("%d\n",ans);
}
else{
int L=block[l]+,ans=max(up[L][r],down[L][r]),temp_up=,temp_down=;
int beginL=lower_bound(block+,block++n,L)-block;
for(int j=l;j<beginL;j++){
ans=max(ans,max(temp_up,temp_down));
if(a[j+]>a[j])temp_up++,temp_down=;
else if(a[j+]<a[j])temp_down++,temp_up=;
else temp_up++,temp_down++;
}
if(a[beginL]>=a[beginL-]){
int tmpx=min(right_down[L-],beginL-l),tmpy=min(r-beginL+,left_up[L]);
ans=max(ans,tmpx+tmpy);
}
if(a[beginL]<=a[beginL-]){
int tmpx=min(right_up[L-],beginL-l),tmpy=min(r-beginL+,left_down[L]);
ans=max(ans,tmpx+tmpy);
}
printf("%d\n",ans);
}
}
}

BZOJ 4491 分块OR差分+线段树的更多相关文章

  1. 【bzoj5028】小Z的加油店 扩展裴蜀定理+差分+线段树

    题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.$m$ 次操作,每次给 $[l,r]$ 内的瓶子容量增加 $ ...

  2. [Luogu5327][ZJOI2019]语言(树上差分+线段树合并)

    首先可以想到对每个点统计出所有经过它的链的并所包含的点数,然后可以直接得到答案.根据实现不同有下面几种方法.三个log:假如对每个点都存下经过它的链并S[x],那么每新加一条路径进来的时候,相当于在路 ...

  3. [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)

    [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...

  4. [BZOJ3307] 雨天的尾巴(树上差分+线段树合并)

    [BZOJ3307] 雨天的尾巴(树上差分+线段树合并) 题面 给出一棵N个点的树,M次操作在链上加上某一种类别的物品,完成所有操作后,要求询问每个点上最多物品的类型. N, M≤100000 分析 ...

  5. [BZOJ 2653] middle(可持久化线段树+二分答案)

    [BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...

  6. LUOGU P1438 无聊的数列 (差分+线段树)

    传送门 解题思路 区间加等差数列+单点询问,用差分+线段树解决,线段树里维护的就是差分数组,区间加等差数列相当于在差分序列中l位置处+首项的值,r+1位置处-末项的值,中间加公差的值,然后单点询问就相 ...

  7. BZOJ 3307 雨天的尾巴 (树上差分+线段树合并)

    题目大意:给你一棵树,树上一共n个节点,共m次操作,每次操作给一条链上的所有节点分配一个权值,求所有节点被分配到所有的权值里,出现次数最多的权值是多少,如果出现次数相同就输出最小的. (我辣鸡bzoj ...

  8. bzoj 3307: 雨天的尾巴【树剖lca+树上差分+线段树合并】

    这居然是我第一次写线段树合并--所以我居然在合并的时候加点结果WAWAWAMLEMLEMLE--!ro的时候居然直接指到la就行-- 树上差分,每个点建一棵动态开点线段树,然后统计答案的时候合并即可 ...

  9. BZOJ 3626: [LNOI2014]LCA(树剖+差分+线段树)

    传送门 解题思路 比较有意思的一道题.首先要把求\(\sum\limits_{i=l}^r dep[lca(i,z)]\)这个公式变一下.就是考虑每一个点的贡献,做出贡献的点一定在\(z\)到根节点的 ...

随机推荐

  1. texi格式文件的读取

    使用texi2html可以将texi格式的文件转换成html格式的文件. sudo apt-get install texi2html 在对应目录下 texi2html filename.texi 或 ...

  2. 【技术累积】【点】【git】【10】.gitignore和.gitattributes

    .gitignore 告诉git忽略一些文件,git status会显示不到这些文件的状态. 一般放在项目根目录,以对全局控制,当然可以放在module下: 具体规则主要是: 以行为单位定义忽略文件类 ...

  3. Shiro Shiro Web Support and EnvironmentLoaderListener

    Shiro Shiro Web Support 主要参考: http://shiro.apache.org/web.html 还有涛哥的 作为资源控制访问的事情,主要使用在网络后台方面,所以了解了本地 ...

  4. 一个完整的jmeter APP登录接口测试实例

    最终效果: 知识点: 通过HTTP信息头管理器, 正则表达式提取器 提取登录要用的token,memcard,Debug Sampler,CSV Data set  config参数化登录,循环控制器 ...

  5. React-Router ---withRouter

    import React from 'react' import { withRouter } from 'react-router' const Hello = (props) => { re ...

  6. Visual Studio 2015 开发 Linux 和树莓派 程序的 C++环境

    可以创建 树莓派 和 linux控制台应用. 创建后的 readme , 有各个设置的说明 你需要输入你虚拟主机, 编译环境linux虚拟机  的简单配置,另外, 4月5日的版本 如果 你的linux ...

  7. LoadRunner中遭遇交互数据加密的处理方案

    在使用LoadRunner时,当你录制完脚本后可能会发现在交互的数据中会存在密文,或者当拿到接口文档时就已经明确的描述出了交互数据的加解密方法,你该怎么办? 事实上这样的遭遇如今已经成为了一种常态,发 ...

  8. Django MVC与MTV概念 Ajax、分页实现

     MVC与MTV概念 MTV与MVC(了解)        MTV模型(django):            M:模型层(models.py)            T:templates      ...

  9. kvm之 virt-install工具命令详解

    一.virt-install是一个命令行工具,它能够为KVM.Xen或其它支持libvrit API的hypervisor创建虚拟机并完成GuestOS安装:此外,它能够基于串行控制台.VNC或SDL ...

  10. Selenium三种等待的使用方式

    在UI自动化测试中,必然会遇到环境不稳定,网络慢的情况,这时如果你不做任何处理的话,代码会由于没有找到元素,而报错.这时我们就要用到wait(等待),而在Selenium中,我们可以用到一共三种等待, ...