前言

前段时间旁听了某课堂两节Spring源码解析课,刚好最近自己又在重新学习中,便在这里记录一下学习所得。我之前写过一篇博文,是介绍BeanFactoryPostProcessor跟BeanPostProcessor是如何发挥作用的,当时觉得讲的还行,但是现在看来,太粗劣了,很多地方没涉及到,而且重点都被我忽略了,简直就是蠢得不行。现在就用这篇文章弥补一下前文中对BeanFactoryPostProcessor的讲解,争取把重点讲到,至于BeanPostProcessor,由于涉及到的东西太多,限于本人目前的水平只能作罢,待后面感悟成熟了再来补充。

我们以AnnotationConfigApplicationContext为例来构建测试类,先附上此次打断点调试的三个简约到极致的测试类:

 public class SpringTest {

     public static void main(String[] args) {
// 从这两行代码,实地跟踪考察Spring中的流程
AnnotationConfigApplicationContext applicationContext = new AnnotationConfigApplicationContext(ScanConfig.class);
applicationContext.getBean(Teacher.class).teach();
}
}
 package myPackage;
import org.springframework.stereotype.Service; @Service
public class Teacher {
public Teacher () {
System.out.println("Teacher init");
}
public void teach () {
System.out.println("teach");
}
}
 package myPackage;
import org.springframework.context.annotation.ComponentScan; @ComponentScan("myPackage")
public class ScanConfig {
}

1、洞悉启动容器时的准备工作

熟悉一些Spring的道友应该都知道,refresh方法中的invokeBeanFactoryPostProcessors方法实现了对BeanFactoryPostProcessor实现类的处理。大家如果只看invokeBeanFactoryPostProcessors方法的话,不会发现有何异常之处,此方法虽然较长,但是处理逻辑很清晰,先对重写了BeanFactoryPostProcessor的子接口BeanDefinitionRegistryPostProcessor方法的实现类进行处理,后对重写了BeanFactoryPostProcessor的方法的实现类做了处理。但是如果心细的话,你会发现问题,Spring是如何将@ComponentScan("myPackage")注解发挥作用的?这时带着这样的问题,我们再回过头来看容器的构造方法,就会在这平实的表面下发现意想不到的 "杀机"。

 public AnnotationConfigApplicationContext(Class<?>... annotatedClasses) {
this();
register(annotatedClasses);
refresh();
}

通过这个构造方法可以知道,在第二行将我们的测试类ScanConfig 注册进了容器中,但这只是注册,注册之后是如何调用如何实现了@ComponentScan("myPackage")这个注解的包扫描的呢?这时我们将目光锁定this()方法。点进去后发现是这样的:

 public AnnotationConfigApplicationContext() {
this.reader = new AnnotatedBeanDefinitionReader(this);
this.scanner = new ClassPathBeanDefinitionScanner(this);
}

在第二行新建reader对象时,调用了这个构造方法:

 public AnnotatedBeanDefinitionReader(BeanDefinitionRegistry registry, Environment environment) {
Assert.notNull(registry, "BeanDefinitionRegistry must not be null");
Assert.notNull(environment, "Environment must not be null");
this.registry = registry;
this.conditionEvaluator = new ConditionEvaluator(registry, environment, null);
AnnotationConfigUtils.registerAnnotationConfigProcessors(this.registry);
}

其中的第六行,最终调用了AnnotationConfigUtils#registerAnnotationConfigProcessors方法,而就是在这个方法中完成了对多个重要Bean的注册,跟我们关系比较大的有以下几个:

         // BeanDefinitionHolder只是存放BD的,里面有三个属性:BD对象、beanName以及别名组成的String[]
Set<BeanDefinitionHolder> beanDefs = new LinkedHashSet<BeanDefinitionHolder>(4);
// 注册最关键的类,对应的类为ConfigurationClassPostProcessor,父类的父类是BeanFactoryPostProcessor
if (!registry.containsBeanDefinition(CONFIGURATION_ANNOTATION_PROCESSOR_BEAN_NAME)) {
RootBeanDefinition def = new RootBeanDefinition(ConfigurationClassPostProcessor.class);
def.setSource(source);
// 将BD注入进容器中,没经过什么处理,只是放入了DefaultListableBeanFactory中的beanDefinitionMap跟存放beanName的list中
beanDefs.add(registerPostProcessor(registry, def, CONFIGURATION_ANNOTATION_PROCESSOR_BEAN_NAME));
}
// 此类实现了BeanPostProcessor,用于处理@Autowired、@Value注解
if (!registry.containsBeanDefinition(AUTOWIRED_ANNOTATION_PROCESSOR_BEAN_NAME)) {
RootBeanDefinition def = new RootBeanDefinition(AutowiredAnnotationBeanPostProcessor.class);
def.setSource(source);
beanDefs.add(registerPostProcessor(registry, def, AUTOWIRED_ANNOTATION_PROCESSOR_BEAN_NAME));
}
// 此类也实现了BeanPostProcessor,用于处理有@Required注解的方法
if (!registry.containsBeanDefinition(REQUIRED_ANNOTATION_PROCESSOR_BEAN_NAME)) {
RootBeanDefinition def = new RootBeanDefinition(RequiredAnnotationBeanPostProcessor.class);
def.setSource(source);
beanDefs.add(registerPostProcessor(registry, def, REQUIRED_ANNOTATION_PROCESSOR_BEAN_NAME));
}

其中第一个对应的类就是我们重点关注的对象 ConfigurationClassPostProcessor类,查看此类的组成,发现它实现了BeanDefinitionRegistryPostProcessor接口,而此接口正是BeanFactoryPostProcessor的子接口。此时,萦绕在我们心头的迷雾开始渐渐散开,我们仿佛能抓到一闪而过的逻辑走向,现在让我们带着之前的发现,进入正主invokeBeanFactoryPostProcessors方法中一探究竟。

2、invokeBeanFactoryPostProcessors

该方法位于AbstractApplicationContext的refresh方法中,如下所示:

 1 public void refresh() throws BeansException, IllegalStateException {
2 synchronized (this.startupShutdownMonitor) {
3 // Prepare this context for refreshing.
4 prepareRefresh();
5
6 // Tell the subclass to refresh the internal bean factory.
7 ConfigurableListableBeanFactory beanFactory = obtainFreshBeanFactory();
8
9 // Prepare the bean factory for use in this context.
10 prepareBeanFactory(beanFactory);
11
12 try {
13 // Allows post-processing of the bean factory in context subclasses.
14 postProcessBeanFactory(beanFactory);
15
16 // Invoke factory processors registered as beans in the context.
17 invokeBeanFactoryPostProcessors(beanFactory);

即第17行调用的方法。初学者看到这个方法的内部实现时,会发现此方法无外乎是找到所有实现了BeanDefinitionRegistryPostProcessor跟BeanFactoryPostProcessor接口的类,按照优先级(实现了PriorityOrdered接口的先于实现了Ordered接口,前两者均先于未实现的,且同一类中按照getOrder方法返回值排优先级)顺序执行它们的重写方法,先执行BeanDefinitionRegistryPostProcessor的重写方法,再执行BeanFactoryPostProcessor的重写方法,很容易理解的逻辑。但是现在我们是带着前面准备工作中得到的线索来的,此时再看,就能透过这个方法朴实的外表发现它潜藏的凶险,它如平地一声雷般让人猛地惊出一身冷汗。

我们打断点进入PostProcessorRegistrationDelegate类中的下面方法中

     public static void invokeBeanFactoryPostProcessors(
ConfigurableListableBeanFactory beanFactory, List<BeanFactoryPostProcessor> beanFactoryPostProcessors) {}

先略过开始对手动添加进去的beanFactoryPostProcessors处理逻辑,看后面的部分代码(由于此方法代码较多,此处就不全部粘贴出来了,因为逻辑很好理解,所以只粘贴重点):

             String[] postProcessorNames =
beanFactory.getBeanNamesForType(BeanDefinitionRegistryPostProcessor.class, true, false); // First, invoke the BeanDefinitionRegistryPostProcessors that implement PriorityOrdered.
List<BeanDefinitionRegistryPostProcessor> priorityOrderedPostProcessors = new ArrayList<BeanDefinitionRegistryPostProcessor>();
// 1.2 先处理实现了PriorityOrdered的类
for (String ppName : postProcessorNames) {
if (beanFactory.isTypeMatch(ppName, PriorityOrdered.class)) {
// 此处通过getBean来生成ConfigurationClassPostProcessor实例对象
priorityOrderedPostProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class));
processedBeans.add(ppName);
}
}
// 就一个对象,有啥好排序的
sortPostProcessors(beanFactory, priorityOrderedPostProcessors);
registryPostProcessors.addAll(priorityOrderedPostProcessors);
// 执行ConfigurationClassPostProcessor中的重写方法postProcessBeanDefinitionRegistry,会将所有加了注解的类注册到容器中
// 此处才是整个invokeBeanFactoryPostProcessors方法的核心所在,需要详述 下面进入ConfigurationClassPostProcessor中的postProcessBeanDefinitionRegistry中一探究竟
invokeBeanDefinitionRegistryPostProcessors(priorityOrderedPostProcessors, registry);

debug到第一行的时候,会发现此处获取到的postProcessorNames 中只有一个值,就是前面准备工作中通过硬编码往容器里注册的ConfigurationClassPostProcessor类。下面的逻辑就是进行各种判断,最后在第19行完成了对ConfigurationClassPostProcessor中postProcessBeanDefinitionRegistry方法的调用。

就是在这个后置处理方法中,完成了@ComponentScan("myPackage")中对包的扫描,完成了所有Bean的注册。执行完这个方法后,你会发现beanDefinitionMap中所有应该容器管理的类全都齐活了,包括其他的后置处理器。这样,后面继续调用beanFactory.getBeanNamesForType方法时,获取到的是所有满足条件的类,后面的工作就会有条不紊的开展下去了。

总结

本文着重追溯了BeanFactoryPostProcessor及其子接口是如何在Spring中发挥作用的。先通过Spring初始化容器时注册进去的ConfigurationClassPostProcessor类触发对其他类的扫描,待全部注册进容器后,再从容器中取对应的BeanFactoryPostProcessor及其子接口的实现类,逐一对重写方法进行调用。

虽然魔鬼在细节,但这也正是解读源码的快乐之处,不是吗?

Spring源码解读之BeanFactoryPostProcessor的处理的更多相关文章

  1. Spring源码分析之`BeanFactoryPostProcessor`调用过程

    前文传送门: Spring源码分析之预启动流程 Spring源码分析之BeanFactory体系结构 本文内容: AbstractApplicationContext#refresh前部分的一点小内容 ...

  2. Spring源码解析之BeanFactoryPostProcessor(三)

    在上一章中笔者介绍了refresh()的<1>处是如何获取beanFactory对象,下面我们要来学习refresh()方法的<2>处是如何调用invokeBeanFactor ...

  3. Spring源码解读--(一)源码下载

    走在Java程序员这条路上,网上Java各种工具满天飞,写个简单的CRUD,相信是个开发都能写出来,于是在思考如何可以在同行业中更有竞争力(其实就是如何赚更多钱).那么,老大给我推荐了Spring源码 ...

  4. 【Spring源码解读】bean标签中的属性

    说明 今天在阅读Spring源码的时候,发现在加载xml中的bean时,解析了很多标签,其中有常用的如:scope.autowire.lazy-init.init-method.destroy-met ...

  5. Spring源码解读:核心类DefaultListableBeanFactory的继承体系

    1 简介 我们常用的ClassPathXmlApplicationContext是AbstractRefreshableApplicationContext的子类,而DefaultListableBe ...

  6. Spring源码解读Spring IOC原理

    一.什么是Ioc/DI? IoC 容器:最主要是完成了完成对象的创建和依赖的管理注入等等. 先从我们自己设计这样一个视角来考虑: 所谓控制反转,就是把原先我们代码里面需要实现的对象创建.依赖的代码,反 ...

  7. spring源码解读之 JdbcTemplate源码

    原文:https://blog.csdn.net/songjinbin/article/details/19857567 在Spring中,JdbcTemplate是经常被使用的类来帮助用户程序操作数 ...

  8. 《spring源码解读》 - IoC 之解析 import 标签

    在上一文中我们分析了注册 BeanDefinition 的过程,在其中我们了解到在解析跟节点和子节点时分两种情况,对于默认名称空间的标签我们通过 DefaultBeanDefinitionDocume ...

  9. Spring源码解析之BeanFactoryPostProcessor(一)

    BeanFactoryPostProcessor 在前面几个章节,笔者有介绍过BeanFactoryPostProcessor,在spring在解析BeanDefinition之后,正式初始化bean ...

随机推荐

  1. 线性方程组的求解(C++)

    1. 最佳求解方案 Most efficient way to solve a system of linear equations 求解形如 Ax=b 的最佳方式 将 A 分解为三角矩阵,A=M1⋅ ...

  2. wxWidgets谁刚开始学习指南(5)——使用wxSmith可视化设计

    wxWidgets谁刚开始学习的整个文件夹指南   PDF版及附件下载 1 前言2 下载.安装wxWidgets3 wxWidgets应用程序初体验4 wxWidgets学习资料及利用方法指导5 用w ...

  3. jQuery多库共存处理$.noConflict()

    如果我们需要同时使用jQuery和其他JavaScript库,我们可以使用 $.noConflict()把$的控制权交给其他库.旧引用的$ 被保存在jQuery的初始化; noConflict() 简 ...

  4. Mybatis 入门到理解篇

    MyBatis         MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code, ...

  5. 贝叶斯推理(Bayes Reasoning)、独立与因式分解

    P(X,Y)=P(X)P(Y),X⊥Y P(X,Y,Z)∝ϕ1(X,Z)ϕ2(Y,Z),(X⊥Y∣∣Z) 1. Reasoning patterns causal reasoning 由原因到结果的一 ...

  6. Matlab Tricks(二十一)—— 软阈值函数的实现

    dj,k^=⎧⎩⎨⎪⎪dj,k−λ,dj,k≥λ0,otherwisedj,k+λ,dj,k≤−λ function y = soft(x, T) y = (x - abs(T) > 0) .* ...

  7. C++ string的那些坑,C++ string功能补充(类型互转,分割,合并,瘦身) ,c++ string的内存本质(简单明了的一个测试)

    1. size_type find_first_of( const basic_string &str, size_type index = 0 ); 查找在字符串中第一个与str中的某个字符 ...

  8. HDU-3839-Ancient Messages(DFS)

    Problem Description In order to understand early civilizations, archaeologists often study texts wri ...

  9. WPF 拖动多个文件到窗体 添加文件信息

    将Window的AllowDrop属性设置为true window添加Drop事件 private void Window_Drop(object sender, DragEventArgs e) { ...

  10. DataTemplate

    DataTemplate作用是布局+数据绑定 使用DataTemplate 同时完成样式布局和数据绑定 <Window.Resources> <DataTemplate x:Key= ...