[JZOJ4687]奇袭

题目

由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上要迎来最终的压力测试——魔界入侵。 
唯一一个神一般存在的Administrator被消灭了,靠原本的整合骑士的力量是远远不够的。所以爱丽丝动员了UW全体人民,与整合骑士一起抗击魔族。 
在UW的驻地可以隐约看见魔族军队的大本营。整合骑士们打算在魔族入侵前发动一次奇袭,袭击魔族大本营! 
为了降低风险,爱丽丝找到了你,一名优秀斥候,希望你能在奇袭前对魔族大本营进行侦查,并计算出袭击的难度。 
经过侦查,你绘制出了魔族大本营的地图,然后发现,魔族大本营是一个N×N的网格图,一共有N支军队驻扎在一些网格中(不会有两只军队驻扎在一起)。 
在大本营中,每有一个k×k(1≤k≤N)的子网格图包含恰好k支军队,我们袭击的难度就会增加1点。 
现在请你根据绘制出的地图,告诉爱丽丝这次的袭击行动难度有多大。 
输入保证每一行和每一列都恰有一只军队。

INPUT

第一行,一个正整数N,表示网格图的大小以及军队数量。

接下来N行,每行两个整数,Xi,Yi,表示第i支军队的坐标。

保证每一行和每一列都恰有一只军队,即每一个Xi和每一个Yi都是不一样 的。

OUTPUT

一行,一个整数表示袭击的难度。

SAMPLE

INPUT

5

1 1

3 2

2 4

5 5

4 3

OUTPUT

10

解题报告

考试打了一个二维树状数组= =

正解:

我们考虑:

保证每一行和每一列都恰有一只军队,即每一个$X_{i}$和每一个$Y_{i}$都是不一样的。

这是这道题的关键,既然每一个$X_{i}$与每一个$Y_{i}$都是不一样的,那么我们就想,我们是否可以把二维压成一维?

自然可以。

以横坐标为下标,纵坐标为关键字,我们实际上就得到了一个$1$到$n$的排列

那么要求的值就转化为:

在区间$[L,R]$中,满足$max(L,R)-min(L,R)==R-L$的区间的个数

想想为什么?

我们要求的是在$k\times k$的矩阵中,恰有$k$个军队的矩阵数目

我们假设我们取的子网格图为以$(a,b)$为左上顶点的$k\times k$子网格,这$k$个军队所在坐标为$(x_{i},y_{i})$那么显然,在这第$a$行到第$a+k-1$行中,每一行的军队都应在$[b,b+k-1]$的区间中

即:

$$max(y_{i})=b+k-1,min(y_{i})=b$$

当我们将其压成一维后,自然就得到了上面的结论

重点在于如何处理这个值

我们考虑分治,就得到$ans[L,R]=ans[L,MID]+ans[MID+1]+ans[...]$

其中,$ans[...]$代表跨越$MID$的区间的答案

我们完全可以处理出每个位置到$MID$的最大值及最小值,那么就可以应用上述的式子了

对于跨越中间的区间的答案,我们可以看作两种情况:

  1. 最值在$MID$同侧
  2. 最值在$MID$异侧

其中,左右颠倒的情况基本是互相对称的,所以我们只详细讨论其中两种

当最值同在左侧时:

我们枚举一个$l$作为区间左端点,由上述式子可推知:$r=l+max(l,mid)-mid(l,mid)$(移项就出来了)

然后就可以判断该右端点的合法性

首先,当$r<=mid$时,该$r$不合法,因为该区间就没有跨越$MID$,并不属于讨论的大前提

然后,我们已经确定了此时的$max$与$min$,所以我们还需判断该$r$是否对其产生影响

即:

$$max(MID+1,r)<max(l,MID)$$

$$min(MID+1,r)>min(l,MID)$$

最值同在右侧:

对称一下

枚举右端点,算左端点,判断是否合法

最小值在左侧,最大值在右侧:

枚举左端点$l$,显然,$max(MID+1,i)(i>MID)$随着$i$增大是单调不下降的(因为新加入的值只可能在比当前$max$大时才会更新该值,否则该值不变,故单调不下降)

同理,$min(MID+1,i)(i>MID)$单调不上升

我们可以建两个指针$r1,r2$,用$r1$与$r2$中间所有点为合法右端点

我们令$r2$满足$min(MID+1,r2)>min(l,MID)$,以满足$min$在左侧

再令$r1$满足$max(MID+1,r1-1)<max(l,MID)$,以使$[MID+1,r1-1]$为不合法的右端点区间

这样就可以保证$[r1,r2]$为合法右端点的区间

剩下的就是统计个数了

还是上面的式子:$max(l,r)-min(l,r)=r-l$

移项:$max(l,r)-r=min(l,r)-l$

即:$max(MID+1,r)-r=min(l,MID)-l$

我们可以用桶来实现,对于$r2$,我们把$max(MID+1,r2)-r2$扔进桶里,对于移动前的$r1$,我们把$max(MID+1,r1)-r1$从桶里扔出来

注意桶的清空以及保证$r1<=r2$

最大值在左侧,最小值在右侧:

对称一下

枚举右端点

读者可以自行移项推一下这种情况的式子(反正底下代码里也有)

这样就可以在$O(nlog_{2}n)$的时间复杂度内解决问题了

 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
inline int read(){
int sum();
char ch(getchar());
for(;ch<''||ch>'';ch=getchar());
for(;ch>=''&&ch<='';sum=sum*+(ch^),ch=getchar());
return sum;
}
const int N();
const int ADD=N<<;
typedef long long L;
int n;
int a[N];
int mxl[N],mxr[N],mnl[N],mnr[N];
L tong[ADD<<];
inline L cal(int l,int r){
if(l==r)
return ;
int mid((l+r)>>);
L ret();
mxl[mid]=mnl[mid]=a[mid];
mxr[mid+]=mnr[mid+]=a[mid+];
for(int i=mid-;i>=l;--i)
mxl[i]=max(mxl[i+],a[i]),mnl[i]=min(mnl[i+],a[i]);
for(int i=mid+;i<=r;++i)
mxr[i]=max(mxr[i-],a[i]),mnr[i]=min(mnr[i-],a[i]);
for(int i=mid;i>=l;--i){
int pos(mxl[i]-mnl[i]+i);
if(pos<=mid||pos>r)
continue;
if(mnr[pos]>mnl[i]&&mxr[pos]<mxl[i])
++ret;
}
for(int i=mid+;i<=r;++i){
int pos(mnr[i]-mxr[i]+i);
if(pos>mid||pos<l)
continue;
if(mnl[pos]>mnr[i]&&mxl[pos]<mxr[i])
++ret;
}
int r1(mid+),r2(mid);
for(int i=mid;i>=l;--i){
while(mnr[r2+]>mnl[i]&&r2<r){
++r2;
++tong[mxr[r2]-r2+ADD];
}
while(mxl[i]>mxr[r1]){
--tong[mxr[r1]-r1+ADD];
++r1;
if(r1>r)
break;
}
if(r1>r)
break;
if(r1<=r2)
ret+=tong[mnl[i]-i+ADD];
}
for(int i=l;i<=mid;++i)
tong[mnl[i]-i+ADD]=;
for(int i=mid+;i<=r;++i)
tong[mxr[i]-i+ADD]=;
int l1(mid),l2(mid+);
for(int i=mid+;i<=r;++i){
while(mnl[l2-]>mnr[i]&&l2>l){
--l2;
++tong[mxl[l2]+l2+ADD];
}
while(mxr[i]>mxl[l1]){
--tong[mxl[l1]+l1+ADD];
--l1;
if(l1<l)
break;
}
if(l1<l)
break;
if(l2<=l1)
ret+=tong[mnr[i]+i+ADD];
}
for(int i=l;i<=mid;++i)
tong[mxl[i]+i+ADD]=;
for(int i=mid+;i<=r;++i)
tong[mnr[i]+i+ADD]=;
return ret;
}
inline L ef(int l,int r){
if(l==r)
return ;
int mid((l+r)>>);
return cal(l,r)+ef(l,mid)+ef(mid+,r);
}
int main(){
n=read();
for(int i=;i<=n;++i){
int x(read()),y(read());
a[x]=y;
}
printf("%lld\n",ef(,n));
}

ps:注意在减的时候下标可能出负数,自行处理一下即可

[JZOJ4687]奇袭的更多相关文章

  1. 奇袭(单调栈+分治+桶排)(20190716 NOIP模拟测试4)

    C. 奇袭 题目类型:传统 评测方式:文本比较 内存限制:256 MiB 时间限制:1000 ms 标准输入输出   题目描述 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而 ...

  2. 9.5 考试 第三题 奇袭题解(codeforce 526f)

    问题 C: 奇袭 时间限制: 1 Sec  内存限制: 256 MB 题目描述 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上 要迎来最终的压力测试——魔界入侵. 唯 ...

  3. 7.16 NOIP模拟测试4 礼物+通讯+奇袭

    T1 礼物 题目大意:n个物品,每次有pi的概率买到,可以重复买,也可以什么都没买到,但算一次购买,问把所有东西都买到的期望次数.对于10%的数据,N = 1;对于30%的数据,N ≤ 5;对于100 ...

  4. 【NOIP2016提高A组8.12】奇袭

    题目 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上要迎来最终的压力测试--魔界入侵. 唯一一个神一般存在的Administrator被消灭了,靠原本的整合骑士的力量 ...

  5. 模拟4题解 T3奇袭

    T3奇袭 题目描述 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上 要迎来最终的压力测试——魔界入侵. 唯一一个神一般存在的Administrator被消灭了,靠原本 ...

  6. [***]HZOJ 奇袭

    C. 奇袭 题目描述 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上 要迎来最终的压力测试——魔界入侵. 唯一一个神一般存在的Administrator被消灭了,靠原 ...

  7. 非确定性有穷状态决策自动机练习题Vol.2 C. 奇袭

    非确定性有穷状态决策自动机练习题Vol.2 C. 奇袭 题目描述 由于各种原因,桐人现在被困在\(Under World\)(以下简称\(UW\))中,而\(UW\)马上 要迎来最终的压力测试--魔界 ...

  8. NOIP模拟测试4「礼物·通讯·奇袭」

    礼物. 首先见到期望一定要想dp,看到n的范围无脑想状压, 然后我就只想到这了. dp方程式还是比较好想的,但是我依然想不出来 略经思考   颓题解 依然不会,随便写了个式子 i状态中不含j $f[i ...

  9. WEB安全第六篇--千里之外奇袭客户端:XSS和HTML注入

    零.前言 最近做专心web安全有一段时间了,但是目测后面的活会有些复杂,涉及到更多的中间件.底层安全.漏洞研究与安全建设等越来越复杂的东东,所以在这里想写一个系列关于web安全基础以及一些讨巧的pay ...

随机推荐

  1. CJOJ1857 -PG图

    Description 背景 LDN不知道为什么特别喜欢PG,也许是某种原因吧…… 有一天,他发明了一个游戏“PG图”. 问题描述 给定一个有向图,每条边都有一个权值. 每次你可以选择一个节点u和一个 ...

  2. K8S之利用Label控制Pod位置

    首先介绍下什么是Label? Label是Kubernetes系列中一个核心概念.是一组绑定到K8s资源对象上的key/value对.同一个对象的labels属性的key必须唯一.label可以附加到 ...

  3. 使用display:flex;实现垂直水平居中

    body,div{margin:0px;padding:0px;} .flex-container{display:flex;height:300px;background-color:#ddd;ju ...

  4. C# Pen绘制虚线(System.Drawing.Pen与System.Windows.Media.Pen)

    一.绘制虚线的方法 GDI绘制,使用的是System.Drawing.Pen Pen pen = new Pen(Color.Red, 1);            pen.DashStyle = S ...

  5. Saiku导出excel指标列无线条以及0与空值显示问题(三十二)

    Saiku导出excel指标列无线条以及0与空值显示问题 描述: 数据库中字段值为0 ,与数据库中字段值为 null 时 ,saiku会将为0 以及为 null 的数据都不展示出来,但是我们其实希望数 ...

  6. js 中的定时器

    在js中的定时器分两种:1.setTimeout() 2.setInterval() 1.setTimeOut() 只在指定时间后执行一次 /定时器 异步运行 function hello(){ al ...

  7. Java&Xml教程(五)使用SAX方式解析XML文件

    Java SAX解析机制为我们提供了一系列的API来处理XML文件,SAX解析和DOM解析方式不太一样,它并不是將XML文件内容一次性全部加载,而是连续的部分加载. javax.xml.parsers ...

  8. MonoBehaviour简述

    Unity中的脚本都是继承自MonoBehaviour. 一.基础函数: 创建脚本就默认的update.start方法:(这些官方的文档都是有的) Start:Update函数第一次运行前调用,一般用 ...

  9. C# ADO.NET动态数据的增删改查(第五天)

    一.插入登录框中用户输入的动态数据 /// <summary> /// 添加数据 /// </summary> /// <param name="sender& ...

  10. 【译】x86程序员手册08 -2.6中断和异常

    2.6 Interrupts and Exceptions 中断和异常 The 80386 has two mechanisms for interrupting program execution: ...