题目链接:

https://jzoj.net/senior/#main/show/6087

题目:

题解:

  • 只需要统计$\prod_{i=l}^r (1-\frac{a_i}{x})$
  • =$exp(\sum_{i=l}^r ln(1-\frac{a_i}{x}))(x>a_i)$
  • 我们可以把$ln(1-x)|x<1|$泰勒展开,得到$-\sum_{i=1}^{∞}\frac{x^i}{i}=0-\frac{x}{1}-\frac{x^2}{2}-\frac{x^3}{3}-...$
  • 那么里面化简得到$-\sum_{i=1}^{r} \sum_{j=1}^∞\frac{a_i^j}{x^j*j})=-\sum_{i=1}^∞\frac{1}{i*x^i}\sum_{j=l}^{r}a_j^i$
  • 实测$∞$取$50$就可以,预处理前缀和来快速计算$\sum_{j=l}^{r}a_j^i$
  • 注意把$x=x/max(a_i)$,$a_i=a_i/max(a_i)$,防止爆$double$的范围
  • 但是发现精度会有很大问题
  • 当$\frac{a_i}{x}$较大时,$ln$里面的东西会比较接近$0$,很难保证精度
  • 为$\frac{a_i}{x}$设置一个$lim$,当$\frac{a_i}{x}>lim$时直接算,再递归左右区间
  • $lim$取$0.5​$是可以过的
  • 寻找区间内最大的$\frac{a_i}{x}$用$RMQ$
  • 参考自大米饼大佬的博客

代码:

#include<bits/stdc++.h>
using namespace std;
typedef double db; const int N=6e5+;
const int M=;
int n,q;
int bin[],lg[N],f[N][];
db res;
db a[N],s[M+][N];
inline char gc()
{
static char*p1,*p2,s[];
if(p1==p2)p2=(p1=s)+fread(s,,,stdin);
return(p1==p2)?EOF:*p1++;
}
inline int read()
{
char ch=gc();int s=;
while (ch<''||ch>'') ch=gc();
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=gc();}
return s;
}
int Max(int x,int y) {return a[x]>a[y]?x:y;}
void pre()
{
for (int i=bin[]=;i<=;bin[i]=bin[i-]<<,i++);
lg[]=-;
for (int i=;i<=n;i++) f[i][]=i,lg[i]=lg[i>>]+;
for (int i=;i<=;i++)
for (int j=;j+bin[i]-<=n;j++)
f[j][i]=Max(f[j][i-],f[j+bin[i-]][i-]);
}
int ask(int l,int r)
{
int t=lg[r-l+];
return Max(f[l][t],f[r-bin[t]+][t]);
}
db x;
db cal(int l,int r)
{
db re=,t=;
for (int i=;i<=M;i++)
{
t*=x;
re-=(s[i][r]-s[i][l-])/(i*t);
}
return exp(re);
}
void solve(int l,int r)
{
int mid=ask(l,r);
if (a[mid]/x<0.5) {res*=cal(l,r);return;}
res*=-a[mid]/x;
if (l<mid) solve(l,mid-);
if (r>mid) solve(mid+,r);
}
int main()
{
freopen("orz.in","r",stdin);
freopen("orz.out","w",stdout);
n=read();q=read();
db mx=;
for (int i=;i<=n;i++) a[i]=read(),mx=max(mx,a[i]);
for (int i=;i<=n;i++) a[i]/=mx;
pre();
for (int i=;i<=n;i++)
{
db t=;
for (int j=;j<=M;j++)
{
t*=a[i];
s[j][i]=s[j][i-]+t;
}
}
while (q--)
{
int l=read(),r=read();
x=read()/mx;
res=;solve(l,r);
printf("%.10f\n",-res);
}
return ;
}

[jzoj 6087] [GDOI2019模拟2019.3.26] 获取名额 解题报告 (泰勒展开+RMQ+精度)的更多相关文章

  1. [jzoj 6086] [GDOI2019模拟2019.3.26] 动态半平面交 解题报告 (set+线段树)

    题目链接: https://jzoj.net/senior/#main/show/6086 题目: 题解: 一群数字的最小公倍数就是对它们质因数集合中的每个质因数的指数取$max$然后相乘 这样的子树 ...

  2. [jzoj 4528] [GDOI2019模拟2019.3.26] 要换换名字 (最大权闭合子图)

    题目链接: https://jzoj.net/senior/#contest/show/2683/0 题目: 题解: 不妨枚举一个点,让两颗树都以这个点为根,求联通块要么点数为$0$,要么包括根(即联 ...

  3. [jzoj 6101] [GDOI2019模拟2019.4.2] Path 解题报告 (期望)

    题目链接: https://jzoj.net/senior/#main/show/6101 题目: 题解: 设$f_i$表示从节点$i$到节点$n$的期望时间,$f_n=0$ 最优策略就是如果从$i, ...

  4. [jzoj 6093] [GDOI2019模拟2019.3.30] 星辰大海 解题报告 (半平面交)

    题目链接: https://jzoj.net/senior/#contest/show/2686/2 题目: 题解: 说实话这题调试差不多花了我十小时,不过总算借着这道题大概了解了计算几何的基础知识 ...

  5. [jzoj 6080] [GDOI2019模拟2019.3.23] IOer 解题报告 (数学构造)

    题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_ ...

  6. [jzoj 6092] [GDOI2019模拟2019.3.30] 附耳而至 解题报告 (平面图转对偶图+最小割)

    题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比 ...

  7. [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)

    题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...

  8. [jzoj 5926] [NOIP2018模拟10.25] naive 的图 解题报告(kruskal重构树+二维数点)

    题目链接: https://jzoj.net/senior/#main/show/5926 题目: 题解: 显然最小的最大路径在最小生成树上(最小生成树=最小瓶颈生成树) 于是我们建出kruskal重 ...

  9. [jzoj 5343] [NOIP2017模拟9.3A组] 健美猫 解题报告 (差分)

    题目链接: http://172.16.0.132/senior/#main/show/5343 题目: 题解: 记旋转i次之后的答案为$ans_i$,分别考虑每个元素对ans数组的贡献 若$s_i& ...

随机推荐

  1. phpmyadmin客户端多服务器配置

    修改libraries/config.default.php 545行,添加 $cfg['Servers']['2'] = $cfg['Servers'][$i];$cfg['Servers']['2 ...

  2. HDU 5863 cjj's string game (矩阵乘法优化递推)

    题目大意:用k种字符构建两个长度为n的字符串(每种字符有无限多个),要求对应位置字符相同的连续子串最长长度为m,问方法数. 其中k,n,m是输入,n(1<=n<=1000000000), ...

  3. 杂项-编程:AOP(面向切面编程)

    ylbtech-杂项-编程:AOP(面向切面编程) 在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一 ...

  4. JavaScript:让你彻底弄清offset

    ylbtech-JavaScript:让你彻底弄清offset 1.返回顶部 1. 很多初学者对于JavaScript中的offset.scroll.client一直弄不明白,虽然网上到处都可以看一张 ...

  5. kubernetes系列:(一)、kubeadm搭建kubernetes(v1.13.1)单节点集群

    kubeadm是Kubernetes官方提供的用于快速部署Kubernetes集群的工具,本篇文章使用kubeadm搭建一个单master节点的k8s集群. 节点部署信息 节点主机名 节点IP 节点角 ...

  6. 比较不错的spring学习博客

    http://blog.csdn.net/tangl_99/article/details/1176141

  7. 转:Redis介绍及常用命令大全

    一 Redis介绍 Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.从2010年3月15日起,Redis的开发 ...

  8. Vue 菜单栏点击实现高亮显示

    步骤: 遍历对象(goods)获取菜单栏每一项的对象(item)和下标(index) 添加点击事件toggle(),传入下标参数:@click="fn1();fn2()" 动态切换 ...

  9. 动态修改SeekBar的颜色

    方法一 1. 需求:需要改变其默认颜色,样式 2.滑竿样式 seekbar.xml <?xml version="1.0" encoding="utf-8" ...

  10. Android 实现调用系统拍照相册,剪切功能

    1.XML布局 <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:andr ...