最近在学习过程中发现opencv有了很多变动, OpenCV 官方的 Python tutorial目前好像还没有改过来,导致大家在学习上面都出现了一些问题,现在做一个小小的罗列,希望对大家有用

做的是关于全景图像的拼接,关于sift和surf的语法之后有需要会另开文章具体阐述,此篇主要是解决大家困惑许久的问题。

笔者python3.x

首先是安装上,必须先后安装pip install opencv_python和pip install opencv-contrib-python==3.3.0.10后面一个一定要指定版本号,因为版本上面最新的opencv-contrib-python-3.4.5.20版本好像申请了什么专利,所以我们可能无法调用的,安装上要是出现了报错,先别急着写在,重新运行一次语句,基本上就可能可以了。

然后是关于sift和surf这两条语句上面,它的语法函数也出现了变化,具体可以参考这个

http://answers.opencv.org/question/52130/300-python-cv2-module-cannot-find-siftsurforb/

好像是最近才修改的,真的走了很多弯路才走通。

#这里的代码有改动之后才能用

#sift = cv.xfeatures2d_SIFT().create()修改为

sift = cv2.xfeatures2d.SIFT_create()

 

hessian=400
#surf=cv2.SURF(hessian)修改为

surf=cv2.xfeatures2d.SURF_create(hessian)

 

下面给出两个代码,是借鉴了网友的,但是对于报错的部分和需要改正的点都已经纠错完毕了,希望对大家有所帮助。有其他的bug也欢迎留言。

示例1

6.jpg

7.jpg

效果图

#coding: utf-8
import numpy as np
import cv2 leftgray = cv2.imread('6.jpg')
rightgray = cv2.imread('7.jpg') hessian=400
surf=cv2.xfeatures2d.SURF_create(hessian)
#surf=cv2.SURF(hessian) #将Hessian Threshold设置为400,阈值越大能检测的特征就越少
kp1,des1=surf.detectAndCompute(leftgray,None) #查找关键点和描述符
kp2,des2=surf.detectAndCompute(rightgray,None) FLANN_INDEX_KDTREE=0 #建立FLANN匹配器的参数
indexParams=dict(algorithm=FLANN_INDEX_KDTREE,trees=5) #配置索引,密度树的数量为5
searchParams=dict(checks=50) #指定递归次数
#FlannBasedMatcher:是目前最快的特征匹配算法(最近邻搜索)
flann=cv2.FlannBasedMatcher(indexParams,searchParams) #建立匹配器
matches=flann.knnMatch(des1,des2,k=2) #得出匹配的关键点 good=[]
#提取优秀的特征点
for m,n in matches:
if m.distance < 0.7*n.distance: #如果第一个邻近距离比第二个邻近距离的0.7倍小,则保留
good.append(m)
src_pts = np.array([ kp1[m.queryIdx].pt for m in good]) #查询图像的特征描述子索引
dst_pts = np.array([ kp2[m.trainIdx].pt for m in good]) #训练(模板)图像的特征描述子索引
H=cv2.findHomography(src_pts,dst_pts) #生成变换矩阵
h,w=leftgray.shape[:2]
h1,w1=rightgray.shape[:2]
shft=np.array([[1.0,0,w],[0,1.0,0],[0,0,1.0]])
M=np.dot(shft,H[0]) #获取左边图像到右边图像的投影映射关系
dst_corners=cv2.warpPerspective(leftgray,M,(w*2,h))#透视变换,新图像可容纳完整的两幅图
cv2.imshow('tiledImg1',dst_corners) #显示,第一幅图已在标准位置
dst_corners[0:h,w:w*2]=rightgray #将第二幅图放在右侧
#cv2.imwrite('tiled.jpg',dst_corners)
cv2.imshow('tiledImg',dst_corners)
cv2.imshow('leftgray',leftgray)
cv2.imshow('rightgray',rightgray)
cv2.waitKey()
cv2.destroyAllWindows()

示例2

test1.jpg

test2.jpg

效果图

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt if __name__ == '__main__':
top, bot, left, right = 100, 100, 0, 500
img1 = cv.imread('test1.jpg')
img2 = cv.imread('test2.jpg')
srcImg = cv.copyMakeBorder(img1, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
testImg = cv.copyMakeBorder(img2, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
img1gray = cv.cvtColor(srcImg, cv.COLOR_BGR2GRAY)
img2gray = cv.cvtColor(testImg, cv.COLOR_BGR2GRAY) #这里的代码有改动之后才能用
#sift = cv.xfeatures2d_SIFT().create()
sift = cv2.xfeatures2d.SIFT_create() # find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1gray, None)
kp2, des2 = sift.detectAndCompute(img2gray, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2) # Need to draw only good matches, so create a mask
matchesMask = [[0, 0] for i in range(len(matches))] good = []
pts1 = []
pts2 = []
# ratio test as per Lowe's paper
for i, (m, n) in enumerate(matches):
if m.distance < 0.7*n.distance:
good.append(m)
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
matchesMask[i] = [1, 0] draw_params = dict(matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0),
matchesMask=matchesMask,
flags=0)
img3 = cv.drawMatchesKnn(img1gray, kp1, img2gray, kp2, matches, None, **draw_params)
plt.imshow(img3, ), plt.show() rows, cols = srcImg.shape[:2]
MIN_MATCH_COUNT = 10
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC, 5.0)
warpImg = cv.warpPerspective(testImg, np.array(M), (testImg.shape[1], testImg.shape[0]), flags=cv.WARP_INVERSE_MAP) for col in range(0, cols):
if srcImg[:, col].any() and warpImg[:, col].any():
left = col
break
for col in range(cols-1, 0, -1):
if srcImg[:, col].any() and warpImg[:, col].any():
right = col
break res = np.zeros([rows, cols, 3], np.uint8)
for row in range(0, rows):
for col in range(0, cols):
if not srcImg[row, col].any():
res[row, col] = warpImg[row, col]
elif not warpImg[row, col].any():
res[row, col] = srcImg[row, col]
else:
srcImgLen = float(abs(col - left))
testImgLen = float(abs(col - right))
alpha = srcImgLen / (srcImgLen + testImgLen)
res[row, col] = np.clip(srcImg[row, col] * (1-alpha) + warpImg[row, col] * alpha, 0, 255) # opencv is bgr, matplotlib is rgb
res = cv.cvtColor(res, cv.COLOR_BGR2RGB)
# show the result
plt.figure()
plt.imshow(res)
plt.show()
else:
print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT))
matchesMask = None

python+opencv中最近出现的一些变化( OpenCV 官方的 Python tutorial目前好像还没有改过来?) 记一次全景图像的拼接的更多相关文章

  1. python字符串中包含Unicode插入数据库乱码问题 分类: Python 2015-04-28 18:19 342人阅读 评论(0) 收藏

    之前在编码的时候遇到一个奇葩的问题,无论如何操作,写入数据库的字符都是乱码,之后是这样解决的,意思就是先解码,然后再插入数据库 cost_str = json.dumps(cost_info) cos ...

  2. [OpenCV-Python] OpenCV 中的图像处理 部分 IV (五)

    部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 22 直方图 22.1 直方图的计算,绘制与分析目标 • 使用 OpenCV 或 Numpy 函数计算直方图 • ...

  3. [OpenCV-Python] OpenCV 中图像特征提取与描述 部分 V (一)

    部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 29 理解图像特征 目标本节我会试着帮你理解什么是图像特征,为什么图像特征很重要,为什么角点很重要等.29.1 解释 我相 ...

  4. [OpenCV-Python] OpenCV 中的图像处理 部分 IV (一)

    部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录   13 颜色空间转换 目标 • 你将学习如何对图像进行颜色空间转换,比如从 BGR 到灰度图,或者从BGR 到 ...

  5. [OpenCV-Python] OpenCV 中的图像处理 部分 IV (二)

    部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 16 图像平滑 目标 • 学习使用不同的低通滤波器对图像进行模糊 • 使用自定义的滤波器对图像进行卷积(2D 卷 ...

  6. SIFT在OpenCV中的调用和具体实现(HELU版)

    前面我们对sift算法的流程进行简要研究,那么在OpenCV中,sift是如何被调用的?又是如何被实现出来的了? 特别是到了3.0以后,OpenCV对特征点提取这个方面进行了系统重构,那么整个代码结构 ...

  7. 在OpenCV中要练习的一些基本操作

    OpenCV上手有一些基本操作要练习下,其实是想把OpenCV玩的像MATLAB一样熟 照着MATLAB的手册从前到后找了下自己经常用到的东西,要完成的操作有: // zeros ones eyes ...

  8. 转载 为什么print在Python 3中变成了函数?

    转载自编程派http://codingpy.com/article/why-print-became-a-function-in-python-3/ 原作者:Brett Cannon 原文链接:htt ...

  9. OpenCV学习(22) opencv中使用kmeans算法

    kmeans算法的原理参考:http://www.cnblogs.com/mikewolf2002/p/3368118.html 下面学习一下opencv中kmeans函数的使用.      首先我们 ...

随机推荐

  1. linux scull 代码write 方法

    write, 象 read, 可以传送少于要求的数据, 根据返回值的下列规则: 如果值等于 count, 要求的字节数已被传送. 如果正值, 但是小于 count, 只有部分数据被传送. 程序最可能重 ...

  2. P1071 01字符串的交叉安排

    题目描述 你有 \(n(1 \le n \le 10^6)\) 个字符'0' 和 \(m(1 \le m \le 10^6)\) 个字符'1'.你需要使用这些字符拼接成一个01字符串,使得满足如下两个 ...

  3. Java中的断言assert的用法

    Java陷阱之assert关键字 一.概述 在C和C++语言中都有assert关键,表示断言. 在Java中,同样也有assert关键字,表示断言,用法和含义都差不多. 二.语法 在Java中,ass ...

  4. jquery 选择多级父子元素

    <div class="box"> <div class="item"> <div class="out"&g ...

  5. Priest John's Busiest Day (2-sat)

    题面 John is the only priest in his town. September 1st is the John's busiest day in a year because th ...

  6. 5.29 SD省队培训D1

    5.29 SD省队培训D1 自闭的一天 T1 梦批糼 先咕一咕(两天之内一定补上) T2 等你哈苏德 继续咕(一星期之内补上) T3喜欢最最痛 四十分做法: 首先,我们发现同一个点加两条额外边是一件非 ...

  7. 盘一盘 Thread源码

    线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. 继承关系图 线 ...

  8. Python12_关于文件概念的讨论与序列化

    文件是什么? 存储在一些设备上的信息的集合.一堆字节: ====================================================到底什么是二进制文件.和文本文件,它们有 ...

  9. Vue____实现本地代码推送到云端仓库的相关操作

    项目初始化搭建完毕,每进行一个功能模块开发的必备操作,目的是方便协同开发以及备份代码 一.每开发一个新功能,都应该创建一个新分枝,待该功能模块开发完成以后,再合并到主分支master中,具体步骤如下: ...

  10. Prometheus + Grafana 部署说明之「安装」

    说明 在前面的Prometheus学习系列文章里,大致介绍说明了Prometheus和Grafana的一些使用,现在开始介绍如何从头开始部署Prometheus+Grafana,来监控各个相关的指标数 ...