A school bought the first computer some time ago(so this computer's id is 1). During the recent years the school bought N-1 new computers. Each new computer was connected to one of settled earlier. Managers of school are anxious about slow functioning of the net and want to know the maximum distance Si for which i-th computer needs to send signal (i.e. length of cable to the most distant computer). You need to provide this information.

Hint: the example input is corresponding to this graph. And from
the graph, you can see that the computer 4 is farthest one from 1, so S1
= 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer
5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.

InputInput
file contains multiple test cases.In each case there
is natural number N (N<=10000) in the first line, followed by (N-1)
lines with descriptions of computers. i-th line contains two natural
numbers - number of computer, to which i-th computer is connected and
length of cable used for connection. Total length of cable does not
exceed 10^9. Numbers in lines of input are separated by a
space.OutputFor each case output N lines. i-th line must contain number
Si for i-th computer (1<=i<=N).Sample Input

5
1 1
2 1
3 1
1 1

Sample Output

3
2
3
4
4

题意 : 给你一颗树,以及树上两点之间的距离,求任意一点所能到的最远的距离。

思路分析:

  对于这个问题,我们可以这样去思考,对于一颗树可以很方便的求出 以当前节点为根节点其所能到达的最远距离,但是这样并不能得到所有的节点的答案,其他的节点需要以其再考虑一下当前节点向上走的情况

再考虑 2 这个节点的时候其最优值可能来自 2 这个子树,也可能来自于右侧的这颗红色的树,即向上走

dp[x][0] 表示 x 节点向下走的最大值, dp[x][1]表示 x 节点向下走的次大值, dp[x][2] 表示 x 节点向上走的最大值。

代码示例:

const int maxn = 1e4+5;

int n;
struct node
{
int to, cost; node(int _to=0, int _cost=0):to(_to), cost(_cost){}
};
vector<node>ve[maxn];
int dp[maxn][3];
int p[maxn]; void dfs1(int x, int fa){ for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i].to;
int cost = ve[x][i].cost;
if (to == fa) continue; dfs1(to, x);
if (dp[x][0] <= dp[to][0]+cost){
dp[x][1] = dp[x][0];
dp[x][0] = dp[to][0]+cost;
p[x] = to;
}
else if (dp[x][1] < dp[to][0]+cost){
dp[x][1] = dp[to][0]+cost;
}
}
}
void dfs2(int x, int fa){ for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i].to;
int cost = ve[x][i].cost;
if (to == fa) continue; if (to != p[x]){
dp[to][2] = max(dp[x][0]+cost, dp[x][2]+cost);
}
else dp[to][2] = max(dp[x][1]+cost, dp[x][2]+cost);
dfs2(to, x); //printf("++++ %d %d %d \n", x, to, dp[to][2]);
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
int x, y;
while(~scanf("%d", &n)){
for(int i = 1; i <= n; i++) ve[i].clear();
for(int i = 2; i <= n; i++){
scanf("%d%d", &x, &y);
ve[i].push_back(node(x, y));
ve[x].push_back(node(i, y));
}
memset(dp, 0, sizeof(dp));
dfs1(1, 0);
dfs2(1, 0); for(int i = 1; i <= n; i++) {
printf("%d\n", max(dp[i][0], dp[i][2]));
}
} return 0;
}

求树上任意一点所能到达的最远距离 - 树上dp的更多相关文章

  1. xdoj-1319 求树上任意一点的最大距离----利用树的直径

    1 #include <bits/stdc++.h> using namespace std; ; vector < vector <int> > g(N); in ...

  2. hdu-2196 树形dp 求一个树中所有节点能到达的最远距离f[i] (其实也不难嘛!)

    #include <bits/stdc++.h> using namespace std; ; struct T { int to; int w; }; vector < vecto ...

  3. HDU 2196 求树上所有点能到达的最远距离

    其实我不是想做这道题的...只是今天考试考了一道类似的题...然后我挂了... 但是乱搞一下还是有80分....可惜没想到正解啊! 所以今天的考试题是: 巡访 (path.pas/c/cpp) Cha ...

  4. Bellman_Ford算法(求一个点到任意一点的最短距离)

    单源最短路问题是固定一个起点,求它到任意一点最短路的问题. 记从起点出发到顶点 i 的最短距离为d[i],则有以下等式成立 d[i]=min{d[j]+(从j到 i 的边的权值) 看代码 #inclu ...

  5. HDU 2376 树形dp|树上任意两点距离和的平均值

    原题:http://acm.hdu.edu.cn/showproblem.php?pid=2376 经典问题,求的是树上任意两点和的平均值. 这里我们不能枚举点,这样n^2的复杂度.我们可以枚举每一条 ...

  6. caioj 1237: 【最近公共祖先】树上任意两点的距离 在线倍增ST

    caioj 1237: [最近公共祖先]树上任意两点的距离 倍增ST 题目链接:http://caioj.cn/problem.php?id=1237 思路: 针对询问次数多的时候,采取倍增求取LCA ...

  7. 关于delphi点击webbrowser中任意一点的问题

    关于delphi点击webbrowser中任意一点的问题 有时候我们需要delphi载入webbrowser1打开网页的时候 需要点击某一个点的位置 可能是坐标 可能是按钮 可能是其他的控件应该如何来 ...

  8. echarts 点击方法总结,点任意一点获取点击数据,在多图联动中用生成标线举例

    关于点击(包括左击,双击,右击等)echarts图形任意一点,获取相关的图形数据,尤其是多图,我想部分人遇到这个问题一直很头大.下面我用举例说明,如何在多图联动基础上,我们点击点击任意一个图上任意一点 ...

  9. HDU 5723 Abandoned country(kruskal+dp树上任意两点距离和)

    Problem DescriptionAn abandoned country has n(n≤100000) villages which are numbered from 1 to n. Sin ...

随机推荐

  1. 【React】react项目引入echarts插件 K线图

    参考npm文档:https://www.npmjs.com/package/echarts-for-react 由于npm上已经有针对react项目出的echarts插件,所以在这里直接安装 第一步: ...

  2. HDU 1542"Atlantis"(线段树+扫描线求矩形面积并)

    传送门 •题意 给你 n 矩形,每个矩形给出你 $(x_1,y_1),(x_2,y_2)$ 分别表示这个矩形的左下角和右上角坐标: 让你求这 n 个矩形并的面积: 其中 $x \leq 10^{5} ...

  3. redis常用指令总结以及功能介绍

    第一部分 redis的常用指令 一.针对key的操作 1.1 del key [key .. ]                 , 删除指定的一个或者多个key;1.2 dump key       ...

  4. UVA 1343 - The Rotation Game-[IDA*迭代加深搜索]

    解题思路: 这是紫书上的一道题,一开始笔者按照书上的思路采用状态空间搜索,想了很多办法优化可是仍然超时,时间消耗大的原因是主要是: 1)状态转移代价很大,一次需要向八个方向寻找: 2)哈希表更新频繁: ...

  5. liunx重定向控制台消息

    Linux 在控制台记录策略上允许一些灵活性, 它允许你发送消息到一个指定的虚拟控制台 (如果你的控制台使用的是文本屏幕). 缺省地, 这个"控制台"是当前虚拟终端. 为了选择 一 ...

  6. 机器学习——集成学习之Boosting

    整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 AdaBoost GB ...

  7. 用es5实现模板字符串

    废话不多说,主要是利用正则表达式replace+eval动态取值(纯属娱乐) String.prototype.myReplace = function(){ return this.replace( ...

  8. ORACLE禁用和启用外键

    禁用外键 select 'alter table '|| t.table_name||' disable constraint '||t.constraint_name||';' from user_ ...

  9. 安装低版本Microsoft .NET Framework 4.5受阻解决方案

    在VS目标框中找不到Microsoft .NET Framework 4.5,项目出错,安装受阻.... 1.Microsoft .NET Framework 安装了高版本后,低版本通过网上上下载的d ...

  10. Visual Studio Team Services使用教程【3】:默认团队权限说明

    2017.4.23之后建议朋友看下面的帖子 TFS2017 & VSTS 实战(繁体中文视频) Visual Studio Team Services(VSTS)与敏捷开发ALM实战关键报告( ...