Problem: time series prediction

The nonlinear autoregressive exogenous model: The Nonlinear autoregressive exogenous (NARX) model, which predicts the current value of a time series based upon its previous values as well as the current and past values of multiple driving (exogenous) series.

However, few NARX models can capture the long-term temporal dependencies appropriately and select the relevant driving series to make a prediction.

2 issues:

1. capture the long-term temporal dependencies

2. select the relevant driving series to make a prediction

We propose a dual-stage attention-based RNN to address these 2 issues.

1. first stage: input attention mechanism to extract relevant driving series.

2. second stage: temporal attention mechanism.

attention-based encoder-decoder networks for time series prediction/ LSTM/ GRU

One problem with encoder-decoder networks is that their performance will deteriorate rapidly as the length of input sequence increases.

Contribution: the two-stage attention mechanism. input attention for driving series and temporal attention for all time stamps.

input attention can select the relevant driving series.

temporal attention capture temporal information.

Supplementary knowledge:

1. what is driving series?

PP: A dual-stage attention-based recurrent neural network for time series prediction的更多相关文章

  1. 论文笔记:(2019)GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud

    目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 ...

  2. (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION

    LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are th ...

  3. (zhuan) LSTM Neural Network for Time Series Prediction

    LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...

  4. (zhuan) Recurrent Neural Network

    Recurrent Neural Network 2016年07月01日  Deep learning  Deep learning 字数:24235   this blog from: http:/ ...

  5. 论文翻译:2021_A New Real-Time Noise Suppression Algorithm for Far-Field Speech Communication Based on Recurrent Neural Network

    论文地址:一种新的基于循环神经网络的远场语音通信实时噪声抑制算法 引用格式:Chen B, Zhou Y, Ma Y, et al. A New Real-Time Noise Suppression ...

  6. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

  7. 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement

    论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...

  8. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  9. Recurrent Neural Network系列2--利用Python,Theano实现RNN

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

随机推荐

  1. JavaScript 浅复制和深复制

    浅复制只会复制第一层的元素,嵌套的元素还是原来的引用. const obj = { a: 1, b: 2 } const copyObj = Object.assign({}, obj) const ...

  2. Swift -POP( 面向协议编程)与OOP(面向对象编程)

    面向协议编程(Protocol Oriented Programming,简称POP),是Swift的一种编程范式,Apple于2015年WWDC提出的,如果大家看Swift的标准库,就会看到大量PO ...

  3. Android实战项目——家庭记账本(三)

    今天完成的主要内容有: 1.主页面账单明细部分细节展示 2.对每个列表项,点击打开新的可编辑修改具体页面 3.实现了搜索页面的UI布局 4.优化了部分页面的UI,提升用户视觉和使用体验 实现效果如下: ...

  4. 【Git】git使用 - 冲突conflict的解决演示

    冲突的解决 (如果git使用不熟练)建议在push不了时,pull之前.在本地创建一个新的分支并commit到local,以保证本地有commit记录,万一出什么问题,可以找回代码,以免代码丢失. ( ...

  5. springboot打成war包并携带第三方jar包

    1.修改打包方式为war     <packaging>war</packaging> 2.添加第三方依赖的jar到pom     我的第三方jar包在resoueces目录下 ...

  6. 双向队列 SDUT 1466

    题目描述      想想双向链表……双向队列的定义差不多,也就是说一个队列的队尾同时也是队首:两头都可以做出队,入队的操作.现在给你一系列的操作,请输出最后队列的状态:命令格式:LIN X  X表示一 ...

  7. demo Django-基础书籍添加删除(单表)

    小demo使用---- 1.pycharm-2019.2 2.python-3.7.2 3.mysql-5.7.25 4.django-2.2.4 使用过程中的一些注意事项和出现的常见错误的解决地址 ...

  8. Java输入和输出数组(加逗号)

    输入示例 61,2,3,4,5,6 输出示例 1,2,3,4,5,61,2,3,4,5,6 import java.util.Scanner; public class Demo01 { public ...

  9. linux 文件系统管理三部曲之二:创建文件系统

    创建文件系统的含义:就是格式化一个硬盘分区,不同的格式化方式,就是创建了不同的文件系统. 格式化: 低级格式化:划分分区前执行,主要是划分硬盘的磁道等. 高级格式化:划分分区后执行,创建文件系统 创建 ...

  10. Spring Boot源码(一):去除web.xml

    访问https://spring.io/ spring boot中: public class MyWebApplicationInitializer implements WebApplicatio ...