Problem: time series prediction

The nonlinear autoregressive exogenous model: The Nonlinear autoregressive exogenous (NARX) model, which predicts the current value of a time series based upon its previous values as well as the current and past values of multiple driving (exogenous) series.

However, few NARX models can capture the long-term temporal dependencies appropriately and select the relevant driving series to make a prediction.

2 issues:

1. capture the long-term temporal dependencies

2. select the relevant driving series to make a prediction

We propose a dual-stage attention-based RNN to address these 2 issues.

1. first stage: input attention mechanism to extract relevant driving series.

2. second stage: temporal attention mechanism.

attention-based encoder-decoder networks for time series prediction/ LSTM/ GRU

One problem with encoder-decoder networks is that their performance will deteriorate rapidly as the length of input sequence increases.

Contribution: the two-stage attention mechanism. input attention for driving series and temporal attention for all time stamps.

input attention can select the relevant driving series.

temporal attention capture temporal information.

Supplementary knowledge:

1. what is driving series?

PP: A dual-stage attention-based recurrent neural network for time series prediction的更多相关文章

  1. 论文笔记:(2019)GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud

    目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 ...

  2. (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION

    LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are th ...

  3. (zhuan) LSTM Neural Network for Time Series Prediction

    LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...

  4. (zhuan) Recurrent Neural Network

    Recurrent Neural Network 2016年07月01日  Deep learning  Deep learning 字数:24235   this blog from: http:/ ...

  5. 论文翻译:2021_A New Real-Time Noise Suppression Algorithm for Far-Field Speech Communication Based on Recurrent Neural Network

    论文地址:一种新的基于循环神经网络的远场语音通信实时噪声抑制算法 引用格式:Chen B, Zhou Y, Ma Y, et al. A New Real-Time Noise Suppression ...

  6. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

  7. 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement

    论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...

  8. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  9. Recurrent Neural Network系列2--利用Python,Theano实现RNN

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

随机推荐

  1. OpenLayers 6 学习笔记2 WMS服务避坑记录

    心血来潮,花1小时安装软件写代码+复习api,顺便熟悉一波wms 再次强化认知了wms获取要素的能力没有wfs强,有待考究 原文链接(转载请声明@秋意正寒  博客园/知乎/B站/csdn/小专栏):h ...

  2. mysql实现远程登录

    CentOS7上安装mysql后,想要实现mysql远程登录. 主要解决二个问题:(1)为mysql用户授予远程登录权限(改表法或授权法):(2)防火墙开放3306端口. (一)授予登录权限 mysq ...

  3. Windows应急响应和系统加固(2)——Windows应急响应的命令使用和安全检查分析

    Windows应急响应的命令使用和安全检查分析 1.获取IP地址: ·ipconfig /all,获取Windows主机IP地址信息: ·ipconfig /release,释放网络IP位置: ·ip ...

  4. .NET CORE(C#) WPF 抽屉式菜单

    微信公众号:Dotnet9,网站:Dotnet9,问题或建议:请网站留言, 如果对您有所帮助:欢迎赞赏. .NET CORE(C#) WPF 抽屉式菜单 阅读导航 本文背景 代码实现 本文参考 源码 ...

  5. 【第三篇】C#调用lua文件

    获取一个全局基本数据类型 使用LuaEnv.Global.Get<T>("name")就可以 var str = luaEnv.Global.Get<string ...

  6. .net Core3.0 +Nlog+Sqlserver

    1.下载Nlog.Nlog.Web.AspNetCore包 2.添加NLog.config  xml文件 资料https://github.com/NLog/NLog/wiki/Database-ta ...

  7. 【Git】git使用 - 各种常用场景命令解决

    (多看git中的各种帮助-h/--help,可能有你想要的命令) 1.分支的创建和切换 创建 >>>> git branch branchName 切换分支 >>& ...

  8. MySQL第六课

    SELECT [DISTINCT]     * /{字段名1,字段名2,字段名3,.........} FROM 表名 [WHERE 条件表达式1] [GROUP BY 字段名[HAVING 条件表达 ...

  9. Java-出栈次序

    题目: X星球特别讲究秩序,所有道路都是单行线.一个甲壳虫车队,共16辆车,按照编号先后发车,夹在其它车流中,缓缓前行.路边有个死胡同,只能容一辆车通过,是临时的检查站,如图所示. X星球太死板,要求 ...

  10. c#判断字符串是否可以转日期格式

    在C#中,对格式的判断有一类专门函数,那就是TryParse.TryParse在各个不同的类型类(如int,string,DateTime)中,都是存在的.在TryParse中一般有两个参数,一个是待 ...