PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction
The nonlinear autoregressive exogenous model: The Nonlinear autoregressive exogenous (NARX) model, which predicts the current value of a time series based upon its previous values as well as the current and past values of multiple driving (exogenous) series.
However, few NARX models can capture the long-term temporal dependencies appropriately and select the relevant driving series to make a prediction.
2 issues:
1. capture the long-term temporal dependencies
2. select the relevant driving series to make a prediction
We propose a dual-stage attention-based RNN to address these 2 issues.
1. first stage: input attention mechanism to extract relevant driving series.
2. second stage: temporal attention mechanism.
attention-based encoder-decoder networks for time series prediction/ LSTM/ GRU
One problem with encoder-decoder networks is that their performance will deteriorate rapidly as the length of input sequence increases.
Contribution: the two-stage attention mechanism. input attention for driving series and temporal attention for all time stamps.
input attention can select the relevant driving series.
temporal attention capture temporal information.
Supplementary knowledge:
1. what is driving series?
PP: A dual-stage attention-based recurrent neural network for time series prediction的更多相关文章
- 论文笔记:(2019)GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud
目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 ...
- (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016 Neural Networks these days are th ...
- (zhuan) LSTM Neural Network for Time Series Prediction
LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...
- (zhuan) Recurrent Neural Network
Recurrent Neural Network 2016年07月01日 Deep learning Deep learning 字数:24235 this blog from: http:/ ...
- 论文翻译:2021_A New Real-Time Noise Suppression Algorithm for Far-Field Speech Communication Based on Recurrent Neural Network
论文地址:一种新的基于循环神经网络的远场语音通信实时噪声抑制算法 引用格式:Chen B, Zhou Y, Ma Y, et al. A New Real-Time Noise Suppression ...
- 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks
ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05 11:13:05 ...
- 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement
论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...
- Recurrent Neural Network系列1--RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Recurrent Neural Network系列2--利用Python,Theano实现RNN
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
随机推荐
- JavaScript 浅复制和深复制
浅复制只会复制第一层的元素,嵌套的元素还是原来的引用. const obj = { a: 1, b: 2 } const copyObj = Object.assign({}, obj) const ...
- Swift -POP( 面向协议编程)与OOP(面向对象编程)
面向协议编程(Protocol Oriented Programming,简称POP),是Swift的一种编程范式,Apple于2015年WWDC提出的,如果大家看Swift的标准库,就会看到大量PO ...
- Android实战项目——家庭记账本(三)
今天完成的主要内容有: 1.主页面账单明细部分细节展示 2.对每个列表项,点击打开新的可编辑修改具体页面 3.实现了搜索页面的UI布局 4.优化了部分页面的UI,提升用户视觉和使用体验 实现效果如下: ...
- 【Git】git使用 - 冲突conflict的解决演示
冲突的解决 (如果git使用不熟练)建议在push不了时,pull之前.在本地创建一个新的分支并commit到local,以保证本地有commit记录,万一出什么问题,可以找回代码,以免代码丢失. ( ...
- springboot打成war包并携带第三方jar包
1.修改打包方式为war <packaging>war</packaging> 2.添加第三方依赖的jar到pom 我的第三方jar包在resoueces目录下 ...
- 双向队列 SDUT 1466
题目描述 想想双向链表……双向队列的定义差不多,也就是说一个队列的队尾同时也是队首:两头都可以做出队,入队的操作.现在给你一系列的操作,请输出最后队列的状态:命令格式:LIN X X表示一 ...
- demo Django-基础书籍添加删除(单表)
小demo使用---- 1.pycharm-2019.2 2.python-3.7.2 3.mysql-5.7.25 4.django-2.2.4 使用过程中的一些注意事项和出现的常见错误的解决地址 ...
- Java输入和输出数组(加逗号)
输入示例 61,2,3,4,5,6 输出示例 1,2,3,4,5,61,2,3,4,5,6 import java.util.Scanner; public class Demo01 { public ...
- linux 文件系统管理三部曲之二:创建文件系统
创建文件系统的含义:就是格式化一个硬盘分区,不同的格式化方式,就是创建了不同的文件系统. 格式化: 低级格式化:划分分区前执行,主要是划分硬盘的磁道等. 高级格式化:划分分区后执行,创建文件系统 创建 ...
- Spring Boot源码(一):去除web.xml
访问https://spring.io/ spring boot中: public class MyWebApplicationInitializer implements WebApplicatio ...