uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2250

  判断两个空间中的三角形是否有公共点。

代码如下:

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <iostream>
#include <algorithm> using namespace std; struct Point3 {
double x[];
Point3() {}
Point3(double *_x) { for (int i = ; i < ; i++) x[i] = _x[i];}
} ;
typedef Point3 Vec3; Vec3 operator + (Vec3 a, Vec3 b) {
Vec3 ret;
for (int i = ; i < ; i++) ret.x[i] = a.x[i] + b.x[i];
return ret;
}
Vec3 operator - (Vec3 a, Vec3 b) {
Vec3 ret;
for (int i = ; i < ; i++) ret.x[i] = a.x[i] - b.x[i];
return ret;
}
Vec3 operator * (Vec3 a, double p) {
Vec3 ret;
for (int i = ; i < ; i++) ret.x[i] = a.x[i] * p;
return ret;
}
Vec3 operator / (Vec3 a, double p) {
Vec3 ret;
for (int i = ; i < ; i++) ret.x[i] = a.x[i] / p;
return ret;
} const double EPS = 1e-;
inline int sgn(double x) { return (x > EPS) - (x < -EPS);} bool operator < (Point3 a, Point3 b) {
for (int i = ; i < ; i++) {
if (sgn(a.x[i] - b.x[i])) return a.x[i] < b.x[i];
}
return true;
}
bool operator == (Point3 a, Point3 b) {
for (int i = ; i < ; i++) {
if (sgn(a.x[i] - b.x[i])) return false;
}
return true;
} double dotDet(Vec3 a, Vec3 b) {
double ret = 0.0;
for (int i = ; i < ; i++) ret += a.x[i] * b.x[i];
return ret;
}
inline double dotDet(Point3 o, Point3 a, Point3 b) { return dotDet(a - o, b - o);}
inline Vec3 crossDet(Vec3 a, Vec3 b) {
Vec3 ret;
for (int i = ; i < ; i++) ret.x[i] = a.x[(i + ) % ] * b.x[(i + ) % ] - b.x[(i + ) % ] * a.x[(i + ) % ];
return ret;
}
inline Vec3 crossDet(Point3 o, Point3 a, Point3 b) { return crossDet(a - o, b - o);}
inline double vecLen(Vec3 x) { return sqrt(dotDet(x, x));}
inline double angle(Vec3 a, Vec3 b) { return acos(dotDet(a, b) / vecLen(a) / vecLen(b));}
inline double ptDis(Point3 a, Point3 b) { return vecLen(a - b);}
inline double triArea(Point3 a, Point3 b, Point3 c) { return vecLen(crossDet(a, b, c));}
inline Vec3 vecUnit(Vec3 x) { return x / vecLen(x);} struct Plane {
Point3 p;
Vec3 n;
Plane() {}
Plane(Point3 p, Vec3 n) : p(p), n(n) {}
Plane(Point3 a, Point3 b, Point3 c) { p = a; n = crossDet(b - a, c - a);}
} ;
inline double pt2Plane(Point3 p, Point3 p0, Vec3 n) { return dotDet(p - p0, n) / vecLen(n);}
inline double pt2Plane(Point3 p, Plane P) { return pt2Plane(p, P.p, P.n);}
inline Point3 ptOnPlane(Point3 p, Point3 p0, Vec3 n) { return p + n * pt2Plane(p, p0, n);}
inline Point3 ptOnPlane(Point3 p, Plane P) { return ptOnPlane(p, P.p, P.n);}
inline bool ptInPlane(Point3 p, Point3 p0, Vec3 n) { return sgn(dotDet(p - p0, n)) == ;}
inline bool ptInPlane(Point3 p, Plane P) { return ptInPlane(p, P.p, P.n);} int linePlaneIntersect(Point3 s, Point3 t, Point3 p0, Vec3 n, Point3 &x) {
double res1 = dotDet(n, p0 - s);
double res2 = dotDet(n, t - s);
if (sgn(res2) == ) {
if (ptInPlane(s, p0, n)) return ;
return ;
}
x = s + (t - s) * (res1 / res2);
return ;
} bool ptInTri(Point3 p, Point3 *tri) {
double area = triArea(tri[], tri[], tri[]);
double sum = 0.0;
for (int i = ; i < ; i++) sum += triArea(p, tri[i], tri[(i + ) % ]);
return sgn(sum - area) == ;
} bool triSegIntersect(Point3 *tri, Point3 s, Point3 t) {
Vec3 n = crossDet(tri[], tri[], tri[]);
if (sgn(dotDet(n, t - s)) == ) return false;
else {
double k = dotDet(n, tri[] - s) / dotDet(n, t - s);
if (sgn(k) < || sgn(k - ) > ) return false;
Point3 x = s + (t - s) * k;
return ptInTri(x, tri);
}
} Point3 tri[][]; bool check() {
for (int i = ; i < ; i++) {
for (int j = ; j < ; j++) {
if (triSegIntersect(tri[i], tri[i ^ ][j], tri[i ^ ][(j + ) % ])) return true;
}
}
return false;
} int main() {
// freopen("in", "r", stdin);
int n;
cin >> n;
while (n--) {
for (int i = ; i < ; i++) {
for (int j = ; j < ; j++) {
for (int k = ; k < ; k++) {
cin >> tri[i][j].x[k];
}
}
}
cout << check() << endl;
}
return ;
}

——written by Lyon

uva 11275 3D Triangles (3D-Geometry)的更多相关文章

  1. Multi-View 3D Reconstruction with Geometry and Shading——Part-2

    From PhDTheses Multi-View 3D Reconstruction with Geometry and Shading 我们的主要目标是只利用图像中的信息而没有额外的限制或假设来得 ...

  2. Multi-View 3D Reconstruction with Geometry and Shading——Part-1

    From PhDTheses Multi-View 3D Reconstruction with Geometry and Shading 计算机视觉的主要任务就是利用图像信息能智能理解周围的世界. ...

  3. 如何用webgl(three.js)搭建一个3D库房,3D密集架,3D档案室,-第二课

    闲话少叙,我们接着第一课继续讲(http://www.cnblogs.com/yeyunfei/p/7899613.html),很久没有做技术分享了.很多人问第二课有没有,我也是抽空写一下第二课. 第 ...

  4. webgl(three.js)实现室内三维定位,3D定位,3D楼宇bim、实时定位三维可视化解决方案——第十四课(定位升级版)

    序: 还是要抽出时间看书的,迷上了豆豆的作品,最近在看<天幕红尘>,书中主人公的人生价值观以及修为都是让我惊为叹止.很想成为那样的人,但是再看看自己每天干的事,与时间的支配情况,真是十分的 ...

  5. 教你调节Boom 3D的3D音效强度,让音乐更带感

    Boom 3D的专业3D环绕技术,让用户能全身心地沉浸在立体音效中.无论是聆听音乐,还是观赏电影,立体音效都能为人们带来更加真实的听觉感触. 那么,Boom 3D的3D环绕功能到底能给用户带来怎样的体 ...

  6. 如何用webgl(three.js)搭建一个3D库房,3D密集架,3D档案室(升级版)

    很长一段时间没有写3D库房,3D密集架相关的效果文章了,刚好最近有相关项目落地,索性总结一下 与之前我写的3D库房密集架文章<如何用webgl(three.js)搭建一个3D库房,3D密集架,3 ...

  7. 如何用webgl(three.js)搭建一个3D库房,3D仓库,3D码头,3D集装箱可视化孪生系统——第十五课

    序 又是快两个月没写随笔了,长时间不总结项目,不锻炼文笔,一开篇,多少都会有些生疏,不知道如何开篇,如何写下去.有点江郎才尽,黔驴技穷的感觉. 写随笔,通常三步走,第一步,搭建框架,先把你要写的内容框 ...

  8. 如何用webgl(three.js)搭建一个3D库房,3D仓库3D码头,3D集装箱,车辆定位,叉车定位可视化孪生系统——第十五课

    序 又是快两个月没写随笔了,长时间不总结项目,不锻炼文笔,一开篇,多少都会有些生疏,不知道如何开篇,如何写下去.有点江郎才尽,黔驴技穷的感觉. 写随笔,通常三步走,第一步,搭建框架,先把你要写的内容框 ...

  9. webgl(three.js)3D光伏,3D太阳能能源,3D智慧光伏、光伏发电、清洁能源三维可视化解决方案——第十六课

    序: 能源是文明和发展的重要保障,人类命运不可避开的话题,无论是战争还是发展,都有它存在的身影.从石器时代到现代文明,人类的能源应用在进步,也在面临能源枯竭的危机与恐惧,而开发与应用可再生能源才是解决 ...

  10. 如何使用webgl(three.js)实现3D储能,3D储能站,3D智慧储能、储能柜的三维可视化解决方案——第十七课

    前言 上节课我们讲了<3D光伏发电>,与之配套的就是能量存储 这节课我们主要讲讲储能,储能站,在分布式能源系统中起到调节用对电的尖峰平谷进行削峰填谷的作用.特别是小型储能站,更加灵活,因地 ...

随机推荐

  1. 洛谷P2073 送花 [2017年6月计划 线段树01]

    P2073 送花 题目背景 小明准备给小红送一束花,以表达他对小红的爱意.他在花店看中了一些花,准备用它们包成花束. 题目描述 这些花都很漂亮,每朵花有一个美丽值W,价格为C. 小明一开始有一个空的花 ...

  2. Sublime Text Version 3.2.1(Build 3207)注册

    Sublime Text Version 3.2.1, Build 3207 一. host添加地址 C:\Windows\System32\drivers\etc\hosts 127.0.0.1 l ...

  3. 你知道forEach和each的区别吗?

      要知道forEach和each的区别,你必须明白一点:forEach是js中的方法(针对数组),而each是jquery中的方法(针对jquery对象,即$( ) ).知道这一点,接下来我分别给举 ...

  4. 模拟7题解 T2visit

    T2 visit [组合数学][中国剩余定理] 一场考试难得见两个数学题 本来想矩阵快速幂,显然空间复杂度不行,主要是没时间,就没打 正解: 首先推波式子 1.$C_{t}^{k}$    在t步中总 ...

  5. oracle-DML-2

    1.update 语句 update  table set  [column,column......] where  column ='' 示例: update   customers set   ...

  6. leetcode 21-30 easy

    21. Merge Two Sorted Lists Merge two sorted linked lists and return it as a new list. The new list s ...

  7. PyCharm使用之配置SSH Interpreter

      在文章PyCharm使用之利用Docker镜像搭建Python开发环境中,该文章介绍了在PyCharm中如何利用Docker镜像搭建Python开发环境.在本文中,将会介绍如何使用PyCharm来 ...

  8. Python单元测试浅析

    测试的意义   人们针对一个具体问题,通过分析和设计,最后用编程语言写出了一个程序,如果它通过了语言解释器(编译器)的检查,可以运行了,那么下一步的工作就是设法确认它确实满足了我们需求.这篇文章就是讨 ...

  9. C# 如何比较版本号大小

    最近遇到了一个数据迁移的问题,因为配置文件的结构发生变化,所以要把低版本的用户数据保存下来,存到最新版本中去. 这里就有一个比较版本号大小的问题了,网上乱七八糟算法一堆,大致意思就是用分割字符串的方法 ...

  10. Python使用Pandas高效处理测试数据

    转自:https://www.cnblogs.com/keyou1/p/10948796.html 一.思考 1.Pandas是什么? 功能极其强大的数据分析库 可以高效地操作各种数据集 csv格式的 ...