洛谷$P2469\ [SDOI2010]$ 星际竞速 网络流
正解:网络流
解题报告:
题目好长昂,,,大概概括下就说有$m$条单向边,$n$个点,每条边有一条边权,每个点有一个点权,然后问每个点都要到达一遍的最小代价是多少$QwQ$?
发现有两个要求,一个是每个点恰好经过一次,一个是代价最小,不显然考虑最小费用最大流,,,?
考虑拆点呗,先给源点和入点,出点和汇点分别连上流量为1费用为0的边,然后对于跳跃操作,就给源点和出点连上流量为1费用为$a_i$的边;对于航道$(x,y)$,就从$x$的入点连向$y$的出点,$over$
昂正确性可以理解成类似于最小割的亚子,,,?
就首先每个点要么是跳过去要么是通过路走过去.
但是如果直接和$S$连路的代价$T$连跳的代价也布星,因为这样就不能保证每个点只被经过一次?就感性理解下,如果切断了两条边,但是这两条边的起点是一样的,这显然是布星的(因为每个点只能被经过一次鸭$QwQ$.
所以就考虑拆点,这样就能保证每个点最多被经过一次了$QwQ$
当然辣最后建图肯定和最小割还是有点儿差别的,,,毕竟一个费用流一个最大流显然还是不一样的鸭$QwQ$.
但我的理解来说大致思想是差不多的所以我就用最小割解释了下$QwQ$
实在不理解的自己画个图就好?$QwQ$
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define t(i) edge[i].to
#define w(i) edge[i].wei
#define fy(i) edge[i].fy
#define ri register int
#define rc register char
#define rb register bool
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define e(i,x) for(ri i=head[x];~i;i=edge[i].nxt) const int N=+,M=+;
int n,m,ed_cnt=-,head[N],dis[N],fr_ed[N],fr_nod[N],S,T,as;
bool vis[N];
struct ed{int to,nxt,wei,fy;}edge[M<<]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void ad(ri x,ri y,ri z,ri p)
{edge[++ed_cnt]=(ed){x,head[y],z,p};head[y]=ed_cnt;edge[++ed_cnt]=(ed){y,head[x],,-p};head[x]=ed_cnt;}
il bool spfa()
{
queue<int>Q;Q.push(S);memset(vis,,sizeof(vis));memset(dis,,sizeof(dis));vis[S]=;dis[S]=;
while(!Q.empty())
{
ri nw=Q.front();Q.pop();vis[nw]=;
e(i,nw)
if(w(i) && dis[t(i)]>dis[nw]+fy(i))
{dis[t(i)]=dis[nw]+fy(i);fr_ed[t(i)]=i;fr_nod[t(i)]=nw;if(!vis[t(i)])Q.push(t(i)),vis[t(i)]=;}
}
if(dis[T]==dis[T+])return ;
ri flow=dis[T+];
for(ri i=T;i!=S;i=fr_nod[i])flow=min(flow,w(fr_ed[i]));
for(ri i=T;i!=S;i=fr_nod[i])w(fr_ed[i])-=flow,w(fr_ed[i]^)+=flow;
as+=flow*dis[T];return ;
} int main()
{
//freopen("2469.in","r",stdin);freopen("2469.out","w",stdout);
n=read();m=read();S=;T=n<<|;memset(head,-,sizeof(head));rp(i,,n)ad(i,S,,),ad(T,i+n,,);
rp(i,,n)ad(i+n,S,,read());rp(i,,m){ri x=read(),y=read();if(x>y)swap(x,y);ad(y+n,x,,read());}
while(spfa());printf("%d\n",as);
return ;
}
洛谷$P2469\ [SDOI2010]$ 星际竞速 网络流的更多相关文章
- 洛谷 P2469 [SDOI2010]星际竞速 解题报告
题目描述 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一,夺得这个项目的冠军无疑是很多人的梦想,来自杰森座α星的悠悠也是其中之一. 赛车大赛的赛场由N颗行星和M条双向星际航路构成,其 ...
- P2469 [SDOI2010]星际竞速(费用流)
P2469 [SDOI2010]星际竞速 最小路径覆盖问题 每个星球必须恰好去一次,而每次高速航行都是从一个星球到另一个星球. 那么高速航行的起点可以保证被去过 高速航行和空间跳跃可以是互相独立的 将 ...
- Bzoj 1927: [Sdoi2010]星际竞速(网络流)
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Description 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大 ...
- 洛谷$P3324\ [SDOI2015]$星际战争 网络流+二分
正解:网络流+二分 解题报告: 传送门$QwQ$ 其实我第一反应是费用流来着,,,但是仔细想了下发现我不会实现各个武器之间独立同时?而且攻击是连续的答案可能是小数嘛$QwQ$. 所以显然不是递推就二分 ...
- P2469 [SDOI2010]星际竞速
在何Au的讲解下终于搞明白了这个以前的坑. 首先考虑最小路径覆盖. 这个题意又要求我们求出的最大流为n-1(这样才能保证路径为1条) 考虑高速航行模式的图怎么建,只需要保证最大流的同时费用最小即可,显 ...
- bzoj 1927 [Sdoi2010]星际竞速——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1927 每个点拆点保证只经过一次. 主要是如果经过了这个点,这个点应该向汇点流过去表示经过了它 ...
- Luogu 2469 [SDOI2010]星际竞速 / HYSBZ 1927 [Sdoi2010]星际竞速 (网络流,最小费用流)
Luogu 2469 [SDOI2010]星际竞速 / HYSBZ 1927 [Sdoi2010]星际竞速 (网络流,最小费用流) Description 10年一度的银河系赛车大赛又要开始了.作为全 ...
- BZOJ 1927: [Sdoi2010]星际竞速
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2051 Solved: 1263[Submit][Stat ...
- BZOJ1927 [Sdoi2010]星际竞速 【费用流】
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Submit: 2582 Solved: 1601 [Submit][St ...
随机推荐
- Istio on ACK集成生态(1): 集成TSDB助力可观测性存储
阿里云容器服务Kubernetes(简称ACK)支持一键部署Istio,可以参考文档在ACK上部署使用Isito.Istio on ACK提供了丰富的监控能力,为网格中的服务收集遥测数据,其中Mixe ...
- LA 4119 Always an integer (数论+模拟)
ACM-ICPC Live Archive 一道模拟题,题意是问一个给出的多项式代入正整数得到的值是否总是整数. 这题是一道数论题,其实对于这个式子,我们只要计算1~最高次项是否都满足即可. 做的时候 ...
- 2018-11-19-win10-uwp-使用-Matrix3DProjection-进行-3d-投影
title author date CreateTime categories win10 uwp 使用 Matrix3DProjection 进行 3d 投影 lindexi 2018-11-19 ...
- clear简单的例子
非常实用,非常简单的例子,结果都在图片里 <html> <head> <style> .keepbj { width:800px; height: 300px; b ...
- 【Activiti工作流引擎】官方快速入门demo
Activiti官方快速入门demo 地址: https://www.activiti.org/quick-start 0. 版本 activiti 5.22.0 JDK 1.8 1. 介绍 这个快速 ...
- React与Vue的相同与不同点
我们知道JavaScript是世界上最流行的语言之一,React和Vue是JS最流行的两个框架.所以要想前端的开发那么必须掌握好这两个框架. 那么这两个框架有什么不同呢? React 和 Vue 相同 ...
- 【原生JS】写最简单的图片轮播
非常简单的一个大图轮播,通过将控制显示位置来进行轮播效果,写来给正在学习的新手朋友们参考交流. 先看效果:(实际效果没有这么快) 先看布局: <div id="display" ...
- tf.nn.embedding_lookup()的用法
函数: tf.nn.embedding_lookup( params, ids, partition_strategy='mod', name=None, validate_indices=True, ...
- java super关键字和调用父类构造方法
表示父类对象的默认引用 如果子类要调用父类被覆盖的实例方法,可用super作为调用者调用父类被覆盖的实例方法. 使用super调用父类方法 使用super调用父类的构造方法 调用构造方法 本类中调用另 ...
- [转]Node.js中package.json中^和~的区别
webpack 项目的package.json 文件列出了项目所依赖的插件和库,同时也给出了对应的版本说明,但是在版本说明前面还有个符号:'^'(插入符号)和'~'(波浪符号),总结了下他们之间的区别 ...