Dimensionality in statistics refers to how many attributes a dataset has. For example, healthcare data is notorious for having vast amounts of variables (e.g. blood pressure, weight, cholesterol level). In an ideal world, this data could be represented in a spreadsheet, with one column representing each dimension. In practice, this is difficult to do, in part because many variables are inter-related (like weight and blood pressure).

Note: Dimensionality means something slightly different in other areas of mathematics and science. For example, in physics, dimensionality can usually be expressed in terms of fundamental dimensions like mass, time, or length. Inmatrix algebra, two units of measure have the same dimensionality if both statements are true:

  1. A function exists that maps one variable onto another variable.
  2. The inverse of the function in (1) does the reverse.

High Dimensional Data

High Dimensional means that the number of dimensions is staggeringly惊人地 high — so high that calculations become extremely difficult. With high dimensional data, the number of features can exceed the number of observations. For example, microarrays, which measure gene expression, can contain tens of hundreds of samples. Each sample can contain tens of thousands of genes.

1. What is the dimension of time series.

Classification of time series is a somewhat tricky matter. Most classification algorithms have an implicit assumption that the data you are classifying are stationary, and they usually work in vector spaces.

So there are two "things" that can be multidimensional here: your original time series and the result of your preprocessing before feeding data to a classifier.

To answer your question straight: a time series is multidimensional if it is a measurement of more than one variable throughout time, it is not multidimensional because of its length.
 
How would you go about classifying time series? Well, it depends on your intent, on the nature of the process you are measuring, etc. But in general terms, you will split your time series in small fragments and construct a multi-dimensional vector that represents each fragment, or you will fit a model (autoregressive, splines, whatever) and use the obtained parameters of the model as the vector representing that fragment. Additionally, you may synthesize new time series from the first one: derivatives, integratives, filtered time series, and build a truly multi-dimensional time series, that you will still need to preprocess.
 
The key is that classifiers will, in general, not treat time explicitely, you have to hide the temporal dimension from your time series and find a way to encode it in a single vector.

Supplementary knowledge:

1. downsample.降采样

2. curse of dimensionality维度灾难

当维数提高时,空间的体积提高太快,因而可用数据变得很稀疏。稀疏性对于任何要求有统计学意义的方法而言都是一个问题,为了获得在统计学上正确并且有可靠的结果,用来支撑这一结果所需要的数据量通常随着维数的提高而呈指数级增长。

wiki

3. 缩写iid: independent and identically distributed random variables. 独立同分布.

Reference:

1. 时间序列数据(2)——维度篇

2. What is meant by 'high dimensional' time series?

3. 万物皆Embedding,从经典的word2vec到深度学习基本操作item2vec

Dimensionality and high dimensional data: definition, examples, curse of..的更多相关文章

  1. CREATE TABLE——数据定义语言 (Data Definition Language, DDL)

    Sql语句分为三大类: 数据定义语言,负责创建,修改,删除表,索引和视图等对象: 数据操作语言,负责数据库中数据的插入,查询,删除等操作: 数据控制语言,用来授予和撤销用户权限. 数据定义语言 (Da ...

  2. How to Delete XML Publisher Data Definition Template

    DECLARE  -- Change the following two parameters  VAR_TEMPLATECODE  VARCHAR2(100) := 'CUX_CHANGE_RPT1 ...

  3. Hive 5、Hive 的数据类型 和 DDL Data Definition Language)

    官方帮助文档:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL Hive的数据类型 -- 扩展数据类型data_t ...

  4. sql基础之DDL(Data Definition Languages)

    好久没写SQL语句了,复习一下. DDL数据定义语言,DDL定义了不同的数据段.数据库.表.列.索引等数据库对象的定义.经常使用的DDL语句包含create.drop.alter等等. 登录数据:my ...

  5. 02-2--数据库MySQL:DDL(Data Definition Language:数据库定义语言)操作数据库中的表(二)

    DDL对数据库的操作:http://blog.csdn.net/baidu_37107022/article/details/72334560 DDL对数据库中表的操作 1)方法概览 2)演示 //创 ...

  6. 数据定义语言(DDL Data Definition Language)基础学习笔记

    创建数据库 create database if not exists STUDY character set utf8 ; 查看新建数据库的语句 SHOW CREATE DATABASE STUDY ...

  7. MySQL中的DDL(Data Definition Language,数据定义语言)

    create(创建表) 标准的建表语句: create table [模式名.]表名 ( #可以有多个列定义 columnName1 dataType [default expr(这是默认值)], . ...

  8. mysql数据库-mysql数据定义语言DDL (Data Definition Language)归类(六)

    0x01 创建数据库并指定字符集和排序规则 -- 三种实例写法 create database temptab2 character set utf8 collate utf8_general_ci; ...

  9. Seven Techniques for Data Dimensionality Reduction

    Seven Techniques for Data Dimensionality Reduction Seven Techniques for Data Dimensionality Reductio ...

随机推荐

  1. 初识Socket通讯编程(一)

    一.什么是socket? 当两台计算机需要通信的时候,往往我们使用的都是TCP去实现的,但是并不会直接去操作TCP协议,通常是通过Socket进行tcp通信.Socket是操作系统提供给开发者的一个接 ...

  2. 使用shell程序备份crontab中的.sh脚本文件

    需求 线上环境有一些定时脚本(用crontab -l可查看当前用户的),有时我们可能会改这些定时任务的脚本内容.为避免改错无后悔药,需用shell实现一个程序,定时备份crontab中的.sh脚本文件 ...

  3. kvm虚拟化安装及虚拟机创建

    1.开启虚拟化(VMware虚拟机为例),安装centos7操作系统. 2.查看CPU是否开启虚拟化 #zgrep  "vmx" /proc/cpuinfo 3.配置yum源,通过 ...

  4. @RequestBody 和 @RequestParam(“test”) 的区别与联系

    @RequestBody @RequestBody主要用来接收前端传递给后端的json字符串中的数据的(请求体中的数据的):GET方式无请求体,所以使用@RequestBody接收数据时,前端不能使用 ...

  5. C#排序算法的实现---选择排序

    一.算法原理 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完. 选择排序算法的运作如下: 1.对比数组中前一个元素跟后一个元素的大小 ...

  6. 关于GET和POST请求的区别,最通俗全面的回答

    GET和POST是HTTP请求的两种基本方法,要说它们的区别,接触过WEB开发的人都能说出一二. 最直观的区别就是GET把参数包含在URL中,POST通过request body传递参数. 你可能自己 ...

  7. Tomcat开启JMX监控

    搭建模拟环境: 操作系统:centos7内存:1Gjdk:1.8.0_131tomcat:8.0.48 环境准备我们这里就不直接演示了,直接配置tomcat的jmx 1.进入到tomcat的bin目录 ...

  8. 关于学习java虚拟机的知识整理一:jvm内存区域

    之前由于考研,对于虚拟机的认识疏忽了太多,现在重新整理回顾一下. 如上图所示,jvm的内存区域(运行时数据区)共分为5处:方法区(Method Area).虚拟机栈(vm Stack).本地方法栈(N ...

  9. javascript长按事件实现方式

    先贴出实践中实现的代码,参考(https://segmentfault.com/q/1010000011640937?sort=created): parentObj.addEventListener ...

  10. POJ3723(最小生成树,负权)

    题目描述 温迪有一个国家,他想建立一支军队来保护他的国家.他收留了N个女孩和M个男孩,想把她们收留成他的士兵.征兵无特权,必须交纳一万元.女孩和男孩之间有一些关系,温迪可以利用这些关系来降低他的成本. ...