Dimensionality in statistics refers to how many attributes a dataset has. For example, healthcare data is notorious for having vast amounts of variables (e.g. blood pressure, weight, cholesterol level). In an ideal world, this data could be represented in a spreadsheet, with one column representing each dimension. In practice, this is difficult to do, in part because many variables are inter-related (like weight and blood pressure).

Note: Dimensionality means something slightly different in other areas of mathematics and science. For example, in physics, dimensionality can usually be expressed in terms of fundamental dimensions like mass, time, or length. Inmatrix algebra, two units of measure have the same dimensionality if both statements are true:

  1. A function exists that maps one variable onto another variable.
  2. The inverse of the function in (1) does the reverse.

High Dimensional Data

High Dimensional means that the number of dimensions is staggeringly惊人地 high — so high that calculations become extremely difficult. With high dimensional data, the number of features can exceed the number of observations. For example, microarrays, which measure gene expression, can contain tens of hundreds of samples. Each sample can contain tens of thousands of genes.

1. What is the dimension of time series.

Classification of time series is a somewhat tricky matter. Most classification algorithms have an implicit assumption that the data you are classifying are stationary, and they usually work in vector spaces.

So there are two "things" that can be multidimensional here: your original time series and the result of your preprocessing before feeding data to a classifier.

To answer your question straight: a time series is multidimensional if it is a measurement of more than one variable throughout time, it is not multidimensional because of its length.
 
How would you go about classifying time series? Well, it depends on your intent, on the nature of the process you are measuring, etc. But in general terms, you will split your time series in small fragments and construct a multi-dimensional vector that represents each fragment, or you will fit a model (autoregressive, splines, whatever) and use the obtained parameters of the model as the vector representing that fragment. Additionally, you may synthesize new time series from the first one: derivatives, integratives, filtered time series, and build a truly multi-dimensional time series, that you will still need to preprocess.
 
The key is that classifiers will, in general, not treat time explicitely, you have to hide the temporal dimension from your time series and find a way to encode it in a single vector.

Supplementary knowledge:

1. downsample.降采样

2. curse of dimensionality维度灾难

当维数提高时,空间的体积提高太快,因而可用数据变得很稀疏。稀疏性对于任何要求有统计学意义的方法而言都是一个问题,为了获得在统计学上正确并且有可靠的结果,用来支撑这一结果所需要的数据量通常随着维数的提高而呈指数级增长。

wiki

3. 缩写iid: independent and identically distributed random variables. 独立同分布.

Reference:

1. 时间序列数据(2)——维度篇

2. What is meant by 'high dimensional' time series?

3. 万物皆Embedding,从经典的word2vec到深度学习基本操作item2vec

Dimensionality and high dimensional data: definition, examples, curse of..的更多相关文章

  1. CREATE TABLE——数据定义语言 (Data Definition Language, DDL)

    Sql语句分为三大类: 数据定义语言,负责创建,修改,删除表,索引和视图等对象: 数据操作语言,负责数据库中数据的插入,查询,删除等操作: 数据控制语言,用来授予和撤销用户权限. 数据定义语言 (Da ...

  2. How to Delete XML Publisher Data Definition Template

    DECLARE  -- Change the following two parameters  VAR_TEMPLATECODE  VARCHAR2(100) := 'CUX_CHANGE_RPT1 ...

  3. Hive 5、Hive 的数据类型 和 DDL Data Definition Language)

    官方帮助文档:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL Hive的数据类型 -- 扩展数据类型data_t ...

  4. sql基础之DDL(Data Definition Languages)

    好久没写SQL语句了,复习一下. DDL数据定义语言,DDL定义了不同的数据段.数据库.表.列.索引等数据库对象的定义.经常使用的DDL语句包含create.drop.alter等等. 登录数据:my ...

  5. 02-2--数据库MySQL:DDL(Data Definition Language:数据库定义语言)操作数据库中的表(二)

    DDL对数据库的操作:http://blog.csdn.net/baidu_37107022/article/details/72334560 DDL对数据库中表的操作 1)方法概览 2)演示 //创 ...

  6. 数据定义语言(DDL Data Definition Language)基础学习笔记

    创建数据库 create database if not exists STUDY character set utf8 ; 查看新建数据库的语句 SHOW CREATE DATABASE STUDY ...

  7. MySQL中的DDL(Data Definition Language,数据定义语言)

    create(创建表) 标准的建表语句: create table [模式名.]表名 ( #可以有多个列定义 columnName1 dataType [default expr(这是默认值)], . ...

  8. mysql数据库-mysql数据定义语言DDL (Data Definition Language)归类(六)

    0x01 创建数据库并指定字符集和排序规则 -- 三种实例写法 create database temptab2 character set utf8 collate utf8_general_ci; ...

  9. Seven Techniques for Data Dimensionality Reduction

    Seven Techniques for Data Dimensionality Reduction Seven Techniques for Data Dimensionality Reductio ...

随机推荐

  1. 《茶余饭后小故事》MV*、MVC、MVP、MVVM的前世今生

    今天我们讲讲历史,讲讲故事,不扯高深术语. MV*表示的意思是:M(Model逻辑层) + View(视图层) + *(中间者).上帝提出了这个逻辑与视图分离,用中间者进行连接的伟大思想,并将实现这个 ...

  2. 首次使用Lambda表达式-sunziren

    需要将List<Apple> list = new ArrayList<Apple>(); 按照Apple对象中的price属性从大到小排序. 第一个念头闪过的是冒泡排序,转念 ...

  3. Docker入门(windows安装)

    Docker入门(安装)Docker是一种轻量级容器技术,实际中直接运行在当前操作系统(Linux)上,而不是虚拟机中.PaaS提供了存储,数据库,网络,负载均衡,自动扩展等功能,Docker云平台就 ...

  4. 到底什么是.NET?

    ​.NET 概念比较庞大,本文只讨论基础知识,只用简单语言描述. 我们是NET程序员,但是我们有没有思考过到底什么是.NET ? 官方定义 .NET是微软推出来的一个致力于敏捷开发的软件框架. 大概2 ...

  5. 阿里面试Java程序员都问些什么?

    刚开始也是小白,也是一步步成成起来的.需要提的一点是,你将来是需要靠这个吃饭的,所以请对找工作保持十二分的热情,而且越早准备越好. 阿里一面 一面是在上午9点多接到支付宝的面试电话的,因为很期望能够尽 ...

  6. liner-classifiers-SVM

    1支持向量机 参考看了这篇文章你还不懂SVM你就来打我 第一遍看完确实有想打死作者的冲动,但是多看几遍之后,真香~ [SVM---这可能是最直白的推导了] 个人觉得这篇文章讲的很清楚,条理清晰,数学推 ...

  7. Beego :布局页面

    1:页面布局 一个html页面由:head部分,body部分,内部css,内部js,外联css,外联的js这几部分组成.因此,一个布局文件也就需要针对这些进行拆分. 2>     新建一个lay ...

  8. 曼孚科技:AI算法领域常用的39个术语(上)

    ​算法是人工智能(AI)核心领域之一. 本文整理了算法领域常用的39个术语,希望可以帮助大家更好地理解这门学科. 1. Attention 机制 Attention的本质是从关注全部到关注重点.将有限 ...

  9. Qt Gui 第八章

    一.QGradient 该类是渐变画刷相关的类,有三个子类,分别是QConicalGradient.QRadialGradient和QLinearGradient 1.QConicalGradient ...

  10. 04、extern引用全局变量

    这里强调一点就是关extern的声明: extern在声明中最主要的作用就是告诉编译器别的文件引用了全局变量XXXX. 举例: 有一个工程名字叫 Project1. Project1下面有两个.cpp ...