Dimensionality in statistics refers to how many attributes a dataset has. For example, healthcare data is notorious for having vast amounts of variables (e.g. blood pressure, weight, cholesterol level). In an ideal world, this data could be represented in a spreadsheet, with one column representing each dimension. In practice, this is difficult to do, in part because many variables are inter-related (like weight and blood pressure).

Note: Dimensionality means something slightly different in other areas of mathematics and science. For example, in physics, dimensionality can usually be expressed in terms of fundamental dimensions like mass, time, or length. Inmatrix algebra, two units of measure have the same dimensionality if both statements are true:

  1. A function exists that maps one variable onto another variable.
  2. The inverse of the function in (1) does the reverse.

High Dimensional Data

High Dimensional means that the number of dimensions is staggeringly惊人地 high — so high that calculations become extremely difficult. With high dimensional data, the number of features can exceed the number of observations. For example, microarrays, which measure gene expression, can contain tens of hundreds of samples. Each sample can contain tens of thousands of genes.

1. What is the dimension of time series.

Classification of time series is a somewhat tricky matter. Most classification algorithms have an implicit assumption that the data you are classifying are stationary, and they usually work in vector spaces.

So there are two "things" that can be multidimensional here: your original time series and the result of your preprocessing before feeding data to a classifier.

To answer your question straight: a time series is multidimensional if it is a measurement of more than one variable throughout time, it is not multidimensional because of its length.
 
How would you go about classifying time series? Well, it depends on your intent, on the nature of the process you are measuring, etc. But in general terms, you will split your time series in small fragments and construct a multi-dimensional vector that represents each fragment, or you will fit a model (autoregressive, splines, whatever) and use the obtained parameters of the model as the vector representing that fragment. Additionally, you may synthesize new time series from the first one: derivatives, integratives, filtered time series, and build a truly multi-dimensional time series, that you will still need to preprocess.
 
The key is that classifiers will, in general, not treat time explicitely, you have to hide the temporal dimension from your time series and find a way to encode it in a single vector.

Supplementary knowledge:

1. downsample.降采样

2. curse of dimensionality维度灾难

当维数提高时,空间的体积提高太快,因而可用数据变得很稀疏。稀疏性对于任何要求有统计学意义的方法而言都是一个问题,为了获得在统计学上正确并且有可靠的结果,用来支撑这一结果所需要的数据量通常随着维数的提高而呈指数级增长。

wiki

3. 缩写iid: independent and identically distributed random variables. 独立同分布.

Reference:

1. 时间序列数据(2)——维度篇

2. What is meant by 'high dimensional' time series?

3. 万物皆Embedding,从经典的word2vec到深度学习基本操作item2vec

Dimensionality and high dimensional data: definition, examples, curse of..的更多相关文章

  1. CREATE TABLE——数据定义语言 (Data Definition Language, DDL)

    Sql语句分为三大类: 数据定义语言,负责创建,修改,删除表,索引和视图等对象: 数据操作语言,负责数据库中数据的插入,查询,删除等操作: 数据控制语言,用来授予和撤销用户权限. 数据定义语言 (Da ...

  2. How to Delete XML Publisher Data Definition Template

    DECLARE  -- Change the following two parameters  VAR_TEMPLATECODE  VARCHAR2(100) := 'CUX_CHANGE_RPT1 ...

  3. Hive 5、Hive 的数据类型 和 DDL Data Definition Language)

    官方帮助文档:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL Hive的数据类型 -- 扩展数据类型data_t ...

  4. sql基础之DDL(Data Definition Languages)

    好久没写SQL语句了,复习一下. DDL数据定义语言,DDL定义了不同的数据段.数据库.表.列.索引等数据库对象的定义.经常使用的DDL语句包含create.drop.alter等等. 登录数据:my ...

  5. 02-2--数据库MySQL:DDL(Data Definition Language:数据库定义语言)操作数据库中的表(二)

    DDL对数据库的操作:http://blog.csdn.net/baidu_37107022/article/details/72334560 DDL对数据库中表的操作 1)方法概览 2)演示 //创 ...

  6. 数据定义语言(DDL Data Definition Language)基础学习笔记

    创建数据库 create database if not exists STUDY character set utf8 ; 查看新建数据库的语句 SHOW CREATE DATABASE STUDY ...

  7. MySQL中的DDL(Data Definition Language,数据定义语言)

    create(创建表) 标准的建表语句: create table [模式名.]表名 ( #可以有多个列定义 columnName1 dataType [default expr(这是默认值)], . ...

  8. mysql数据库-mysql数据定义语言DDL (Data Definition Language)归类(六)

    0x01 创建数据库并指定字符集和排序规则 -- 三种实例写法 create database temptab2 character set utf8 collate utf8_general_ci; ...

  9. Seven Techniques for Data Dimensionality Reduction

    Seven Techniques for Data Dimensionality Reduction Seven Techniques for Data Dimensionality Reductio ...

随机推荐

  1. XGBoost学习笔记1

    XGBoost XGBoost这个网红大杀器,似乎很好用,完事儿还是自己推导一遍吧,datacamp上面有辅助的课程,但是不太涉及原理 它究竟有多好用呢?我还没用过,先搞清楚原理,hahaha~ 参考 ...

  2. atcoder Keyence Programming Contest 2020 题解

    比赛地址 A 题意:给一个\(n*m\)的初始为白色的矩阵,一次操作可以将一行或一列染成 黑色,问至少染出\(k\)个黑点的最少操作次数. \(n\),\(m\)<=100,\(k\)<= ...

  3. 用友UAP NC 开发环境抛出"JDK默认编辑器找不到"

    此节点是升级65之前开发的,已经很久不使用,今天在开发环境使用,点查询抛出此异常. 最后问了人解决方法,就是往JRE系统库加入对应的jar包

  4. JavaWeb开发图书管理系统(新本版)源码

    开发环境: Windows操作系统开发工具: Myeclipse+Jdk+Tomcat+MySQL数据库 运行效果图

  5. openlayers编辑区域

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  6. 【剑指Offer】60、按之字形顺序打印二叉树

    题目描述 请实现一个函数按照之字形打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右至左的顺序打印,第三行按照从左到右的顺序打印,其他行以此类推. 题解:BFS 主要的方法与BFS写法没什么区 ...

  7. 4级搭建类401-Oracle 19c Non-CDB DG搭建(Linux 主备一对一 LGWR ASYNC)公开

    项目文档引子系列是根据项目原型,制作的测试实验文档,目的是为了提升项目过程中的实际动手能力,打造精品文档AskScuti. 项目文档引子系列除特定项目目前不对外发布,仅作为博客记录,其他公开.如学员在 ...

  8. pandas玩转excel-> (1)如何利用pandas创建【行,列,单元格】

    import pandas as pd #------新建单元格的方法一:通过先创建字典的形式 #可以先新建一个字典d={'x':100,'y':200,'z':300} #打印字典的索引print( ...

  9. 统一身份认证服务IdentityServer4实践

    导读 当企业的应用系统逐渐增多后,每个系统单独管理各自的用户数据容易形成信息孤岛,分散的用户管理模式阻碍了企业应用向平台化演进.当企业的业务发展到一定规模,构建统一的标准化账户管理体系将是必不可少的, ...

  10. 3、手写Unity容器--第N层依赖注入

    这个场景跟<手写Unity容器--第一层依赖注入>又不同,这里构造AndroidPhone的时候,AndroidPhone依赖于1个IPad,且依赖于1个IHeadPhone,而HeadP ...