Description

若一个大于 \(1\) 的整数 \(M\) 的质因数分解有 \(k\) 项,其最大的质因子为 \(Ak\) ,并且满足 \(Ak^K \leq N\) , \(Ak<128\) ,我们就称整数 \(M\) 为 \(N-\) 伪光滑数。现在给出 \(N\) ,求所有整数中,第 \(K\) 大的 \(N-\) 伪光滑数。

Input

只有一行,为用空格隔开的整数 \(N\) 和 \(K\)

\(2 \leq N \leq 10^18\) ,\(1 \leq K \leq 800000\),保证至少有 \(K\) 个满足要求的数

Output

只有一行,为一个整数,表示答案。

Sample Input

12345 20

Sample Output

9167


想法

目前见到的求 第 \(K\) 大/小的题大概有三种做法:

1.二分判断。

2.在 \(K\) 不太大时,可以从大到小/从小到大枚举,用数据结构维护当前最大,取出最大值后用次大值(扩展值)代替它。

3.堆的 \(K\) 路归并(我也不懂这是啥 %%%标算

这道题中我用的是第二种做法。

首先一个性质,对于数 \(i\) ,\(i \leq Ak^k \leq N\) ,假设 \(Ak^k\) 为 \(i\) 的“特征数”

由于 \(Ak \leq 128\) , 而128以内的质数仅31个,所以 \(N\) 以内的特征数值很少

所以大体想法就是优先队列维护所有的“特征数”对应的 \(i\) 的最大值,每次取出最大,用次大替代就行了。

初始状态时每个特征数对应的最大值很好搞,就是 \(Ak^k\) (特征数本身的值)

但次大是多少呢? \(Good\) \(Question!\)

我发现次大有两种情况,一种把一个 \(Ak\) 换为 \(A_{k-1}\),一种是将某一个 \(Ax\) 换为 \(A_{x-1}\)

有点乱。

试着搞出一种扩展顺序,即“分层扩展”。

初始状态,某个特征数 \(Ak^k\) 对应的最大值是 \(k\) 个 \(Ak\) 相乘,不妨称它的层数为0

在扩展 \(Ak^k\) 时,取出一个 \(Ak\) ,换成 \(A1,A2,...,A_{k-1}\) ,即 \(Ak^{k-1} \times Ax\) ,称它们的层数为1(替换了一个 \(Ak\))

在扩展 \(AK^{k-1} \times Ax\) 时,再取出一个 \(Ak\) ,换成 \(A1,A2,...,Ax\) ,即 \(Ak^{k-2} \times Ax \times Ay\) ,称它们的层数为2(替换了两个 \(Ak\))

以此类推……

注意到每次扩展时,\(Ay \leq Ax\) ,这是为了防止同一个数,由于被换的顺序不同而被计算多次。

这样可以保证每次扩展后,该特征数的次大值都在优先队列中嘛?(注意,是“在优先队列中”,但不一定是这次扩展加进去的)

首先,显然每个数扩展出的数都比它本身小,所以对于所有可以通过这种方法扩展出、但没加到优先队列中的数,一定说明扩展出它的数没加到优先队列中或在队列中还没成为最大值,即这些数不是我要的“次大值”

而是不是所有数都可以通过这种方法扩展出呢?显然可以!

其实这就是模拟搜索吧。。。复杂度 \(O(128K)\) 可以卡过。


一些启示

\(Orz\)

分层扩展……?

要有一些顺序的思想吧,不必每次只扩展一个……?

【我也不知道哭唧唧】


代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
#include<vector> using namespace std; typedef long long ll; ll n;
int k;
int p[31]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127}; struct data{
ll t;
int x,y,z; // p[x]^y,nxtmin--p[z]
data() { t=0; x=y=z=0; }
data(ll a,int b,int c,int d) { t=a; x=b; y=c; z=d; }
bool operator < (const data &b) const{ return t<b.t; }
};
priority_queue<data> q; int main()
{
scanf("%lld%d",&n,&k); ll x;
for(int i=0;i<31;i++){
x=1;
for(int j=1;1ll*x*p[i]<=n;j++){
x*=p[i];
q.push(data(x,i,j,i-1));
}
} data tmp;
while(k--){
tmp=q.top(); q.pop();
if(tmp.y>1){
for(int i=tmp.z;i>=0;i--)
q.push(data(tmp.t/p[tmp.x]*p[i],tmp.x,tmp.y-1,i));
}
}
printf("%lld\n",tmp.t); return 0;
}

[bzoj4524] [loj#2047] [Cqoi2016] 伪光滑数的更多相关文章

  1. 【BZOJ4524】[Cqoi2016]伪光滑数 堆(模拟搜索)

    [BZOJ4524][Cqoi2016]伪光滑数 Description 若一个大于1的整数M的质因数分解有k项,其最大的质因子为Ak,并且满足Ak^K<=N,Ak<128,我们就称整数M ...

  2. @bzoj - 4524@ [Cqoi2016]伪光滑数

    目录 @description@ @solution@ @version - 1@ @version - 2@ @accepted code@ @version - 1@ @version - 2@ ...

  3. [CQOI2016]伪光滑数

    题目描述 若一个大于1的整数M的质因数分解有k项,其最大的质因子为Ak,并且满足Ak^K<=N,Ak<128,我们就称整数M为N-伪 光滑数.现在给出N,求所有整数中,第K大的N-伪光滑数 ...

  4. BZOJ4524 CQOI2016伪光滑数(堆)

    对于每个质数求出其作为最大质因子时最多能有几个质因子,开始时将这些ak1~akmaxk扔进堆.考虑构造方案,使得每次取出最大值后,最大质因子.质因子数均与其相同且恰好比它小的数都在堆里.类似暴搜,对于 ...

  5. BZOJ4524 [Cqoi2016]伪光滑数

    BZOJ上的题面很乱,这里有一个题面. 题解: 正解是可持久化可并堆+DP,可惜我不会... 但暴力也可过这道题. 先在不超过N的前提下,在大根堆里加入每个质数的J次方,1<=j, 然后就可以发 ...

  6. Bzoj 4524 [Cqoi2016]伪光滑数(堆)

    题面 题解 先筛出$<128$的质数,很少,打个表即可 然后钦定一个质数最大,不断替换即可(丢进大根堆里面,然后取出一个,替换在丢进去即可) 具体来说,设一个四元组$[t,x,y,z]$表示当前 ...

  7. 【BZOJ-4524】伪光滑数 堆 + 贪心 (暴力) [可持久化可并堆 + DP]

    4524: [Cqoi2016]伪光滑数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 183  Solved: 82[Submit][Status] ...

  8. 2021.08.01 P4359 伪光滑数(二叉堆)

    2021.08.01 P4359 伪光滑数(二叉堆) [P4359 CQOI2016]伪光滑数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 若一个大于 11 的整数 MM ...

  9. Loj 2047 伪光滑数

    Loj 2047 伪光滑数 正解较复杂,但这道题其实可以通过暴力解决. 预处理出 \(128\) 内的所有质数,把 \(n\) 内的 \(prime[i]^j\) 丢进堆中,再尝试对每个数变形,除一个 ...

随机推荐

  1. C# 如何解析XML

  2. 西游记之孙悟空三打白骨精(IMAX)

    短评:看了20分钟就有玩手机的冲动.剧情还差点意思,不能达到吸引人目不转睛的程度

  3. css3新增属性有哪些?css3中常用的新增属性总结

    css3新增属性有哪些?来提问这个问题的人都应该知道css3是css的升级版本,那么,css3既然是升级版本,自然是会新增一些属性,接下来本篇文章将给大家介绍关于css3中常用的新增属性. 一.css ...

  4. 洛谷$P2824\ [HEOI2016/TJOI2016]$ 排序 线段树+二分

    正解:线段树+二分 解题报告: 传送门$QwQ$ 昂着题好神噢我$jio$得$QwQQQQQ$,,, 开始看到长得很像之前考试题的亚子,,,然后仔细康康发现不一样昂$kk$,就这里范围是$[1,n]$ ...

  5. 洛谷$ P$4317 花神的数论题 数位$dp$

    正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...

  6. 1030 完美数列 (25 分)C、Java、python

    题目描述 给定一个正整数数列,和正整数p,设这个数列中的最大值是M,最小值是m,如果M <= m * p,则称这个数列是完美数列. 现在给定参数p和一些正整数,请你从中选择尽可能多的数构成一个完 ...

  7. 小小知识点(二十三)circularly symmetric complex zero-mean white Gaussian noise(循环对称复高斯噪声)

    数学定义 http://en.wikipedia.org/wiki/Complex_normal_distribution 通信中的定义 在通信里,复基带等效系统的噪声是复高斯噪声,其分布就是circ ...

  8. Kubernetes 会不会“杀死” DevOps?

    作者丨孙健波(天元)  阿里巴巴技术专家 导读:DevOps 这个概念最早是在 2007 年提出的,那时云计算基础设施的概念也才刚刚提出没多久,而随着互联网的逐渐普及,应用软件的需求爆发式增长,软件开 ...

  9. PPP协议 PAP认证

       

  10. 动态规划,以LeetCode-CombinationSumIV问题为例

    简介: 动态规划问题面试中经常遇到的问题之一,按照动态规划的一般定义,其一般解法在于将大问题分解为很多小问题去解决,但是我在遇到很多实际的问题时,想法都是强行的去将问题分解,而忽略了分解的必要性和途径 ...