https://www.lydsy.com/JudgeOnline/problem.php?id=4259

很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n。可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺。
你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这个位置开始连续m个字符形成的子串是否可能与A串完全匹配?

跟随胡神犇的步伐先把前置技能学了。

参考:https://www.cnblogs.com/clrs97/p/4814499.html

kmp是不行的,而作为一道套路题,我们有一定的套路:暴力匹配!

先默认字符串是以0开头的,方便我们后来FFT。

设dis(A,B)=(A-B)*[A!='*']*[B!='*']表示了AB字符是否相等,如果相等则答案为0。

于是我们把*字符看做0,则直接变成dis(A,B)=(A-B)AB。

设f[i]为B串以i为终点,往前与A匹配是否能匹配上。

显然就是dis累加的过程,只要最终f[i]=0就说明i-n+2是一个合法解。

然后你就会发现这个dis累加拆开之后很像卷积啊。

于是把A数组倒过来然后后面补齐0(即*字符),你就会发现实际上这就是三个卷积。

于是我们(不)愉快的写了个FFT并且AC。

(式子推导就看参考吧……心情不好不想写数学公式)

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef double dl;
const dl pi=acos(-1.0);
const dl eps=0.5;
const int N=2e6+;
struct complex{
dl x,y;
complex(dl xx=0.0,dl yy=0.0){
x=xx;y=yy;
}
complex operator +(const complex &b)const{
return complex(x+b.x,y+b.y);
}
complex operator -(const complex &b)const{
return complex(x-b.x,y-b.y);
}
complex operator *(const complex &b)const{
return complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
};
void FFT(complex a[],int n,int on){
for(int i=,j=n>>;i<n-;i++){
if(i<j)swap(a[i],a[j]);
int k=n>>;
while(j>=k){j-=k;k>>=;}
if(j<k)j+=k;
}
for(int i=;i<=n;i<<=){
complex res(cos(-on**pi/i),sin(-on**pi/i));
for(int j=;j<n;j+=i){
complex w(,);
for(int k=j;k<j+i/;k++){
complex u=a[k],t=w*a[k+i/];
a[k]=u+t;a[k+i/]=u-t;
w=w*res;
}
}
}
if(on==-)
for(int i=;i<n;i++)a[i].x/=n;
}
int n,m,a[N],b[N];
complex f[N],A[N],B[N];
char s1[N],s2[N];
int main(){
scanf("%d%d%s%s",&n,&m,s1,s2);
for(int i=,j=n-;i<j;i++,j--)swap(s1[i],s1[j]);
for(int i=;i<n;i++){
if(s1[i]!='*')a[i]=s1[i]-'a'+;
else a[i]=;
}
for(int i=;i<m;i++){
if(s2[i]!='*')b[i]=s2[i]-'a'+;
else b[i]=;
}
int len=;
while(len<m)len<<=; for(int i=;i<len;i++)
A[i]=complex(a[i]*a[i]*a[i],),B[i]=complex(b[i],);
FFT(A,len,);FFT(B,len,);
for(int i=;i<len;i++)f[i]=f[i]+A[i]*B[i]; for(int i=;i<len;i++)
A[i]=complex(a[i]*a[i],),B[i]=complex(b[i]*b[i],);
FFT(A,len,);FFT(B,len,);
for(int i=;i<len;i++)f[i]=f[i]-A[i]*B[i]*complex(,); for(int i=;i<len;i++)
A[i]=complex(a[i],),B[i]=complex(b[i]*b[i]*b[i],);
FFT(A,len,);FFT(B,len,);
for(int i=;i<len;i++)f[i]=f[i]+A[i]*B[i]; FFT(f,len,-);
int ans=;
for(int i=n-;i<m;i++)if(f[i].x<eps)ans++;
printf("%d\n",ans);
if(ans){
for(int i=n-;i<m;i++)if(f[i].x<eps)printf("%d ",i-n+);
puts("");
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4259:残缺的字符串——题解的更多相关文章

  1. CF528D Fuzzy Search 和 BZOJ4259 残缺的字符串

    Fuzzy Search 给你文本串 S 和模式串 T,求 S 的每个位置是否能模糊匹配上 T. 这里的模糊匹配指的是把 T 放到 S 相应位置上之后,T 中每个字符所在位置附近 k 个之内的位置上的 ...

  2. BZOJ4259残缺的字符串

    题目描述 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. ...

  3. BZOJ4259 残缺的字符串 【fft】

    题目 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想 ...

  4. BZOJ4259: 残缺的字符串 & BZOJ4503: 两个串

    [传送门:BZOJ4259&BZOJ4503] 简要题意: 给出两个字符串,第一个串长度为m,第二个串长度为n,字符串中如果有*字符,则代表当前位置可以匹配任何字符 求出第一个字符串在第二个字 ...

  5. BZOJ4259 残缺的字符串 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8798532.html 题目传送门 - BZOJ4259 题意 给你两个串,用其中一个来匹配另一个.问从母串的那些 ...

  6. BZOJ4259 残缺的字符串(FFT)

    两个串匹配时相匹配的位置位置差是相同的,那么翻转一个串就变成位置和相同,卷积的形式. 考虑如何使用卷积体现两个位置能否匹配.一个暴力的思路是每次只考虑一种字符,将其在一个串中设为1,并在另一个串中将不 ...

  7. BZOJ4259:残缺的字符串(FFT)

    Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同 ...

  8. [BZOJ4259]残缺的字符串

    Description: 给定两个带通配符的串,求可能出现几次匹配,以及这些匹配位置 Hint: \(n \le 3*10^5\) Solution: 定义匹配函数 \(P(x)=\sum_{i=x} ...

  9. 2018.11.17 bzoj4259: 残缺的字符串(fft)

    传送门 fftfftfft套路题. 我们把aaa ~ zzz映射成111 ~ 262626,然后把∗*∗映射成000. 考虑对于两个长度都为nnn的字符串A,BA,BA,B. 我们定义一个差异函数di ...

随机推荐

  1. mpvue笔记

    简介: mpvue 修改了 Vue.js 的 runtime 和 compiler 实现,为小程序开发引入 Vue.js 开发体验 我觉得就像scss一样,写的时候方便,最后还是要转成css文件 搭建 ...

  2. leetcode-峰值检测

    寻找峰值     峰值元素是指其值大于左右相邻值的元素. 给定一个输入数组 nums,其中 nums[i] ≠ nums[i+1],找到峰值元素并返回其索引. 数组可能包含多个峰值,在这种情况下,返回 ...

  3. 【springmvc+mybatis项目实战】杰信商贸-4.maven依赖+PO对+映射文件

    上一篇我们附件的增删改查功能全部完成.但是我们的附件有一个字段叫做“类型”(ctype),这里我们要使用数据字典,所以对于这一块我们要进行修改. 首先介绍一下数据字典 数据字典它是一个通用结构,跟业务 ...

  4. DeepLearning Intro - sigmoid and shallow NN

    This is a series of Machine Learning summary note. I will combine the deep learning book with the de ...

  5. 有个AI陪你一起写代码,是种怎样的体验?| 附ICLR论文

    从前,任何程序的任何功能,都需要一行一行敲出来. 后来,程序猿要写的代码越来越多,世界上便有了各种各样的API,来减少大家的工作量.有些功能,可以让API来帮我们实现. 不过,人类写下的话,API并不 ...

  6. C++ 学习笔记之——字符串和字符串流

    1. 字符数组 字符数组,也就是存放字符类型数据的数组,只不过字符数组的结尾必须是 '\0'.C++ 已经提供了一些字符串处理函数,这些函数被封装在头文件 和 <string.h> 中. ...

  7. *.hbm.xml作用是什么

    实体与表的映射关系通过XML来描述的文件.在 hibernate.cfg.xml中管理,在项目启动的时候加载到内存. hbm指的是hibernate的映射文件 映射文件也称映射文档,用于向Hibern ...

  8. GitHub把自己整个文件夹上传

    我已经有了自己github,但是我怎么对我的项目进行上传呢,普通的上传只有上传单一的文件 这不我去下载了Git(链接至机房ftp文件夹下文件ftp://10.64.130.1/%C8%ED%BC%FE ...

  9. C中的除法,商和余数的大小、符号如何确定

    对于C中的除法,商和余数的大小.符号是如何确定的呢?在C89中,只规定了如果两个数为正整数,那么余数的符号为正,并且商的值是接近真实值的最大整数.比如5 / 2,那么商就是2,余数就是1.但是,C89 ...

  10. 自测之Lesson12:信号量

    题目:创建一个包含5个信号量的信号集. 完成代码: #include <stdio.h> #include <sys/ipc.h> #include <sys/sem.h ...