Description

Little Q loves playing with different kinds of graphs very much. One day he thought about an interesting category of graphs called ``Cool Graph'', which are generated in the following way: 
Let the set of vertices be {1, 2, 3, ..., $n$}. You have to consider every vertice from left to right (i.e. from vertice 2 to $n$). At vertice $i$, you must make one of the following two decisions: 
(1) Add edges between this vertex and all the previous vertices (i.e. from vertex 1 to $i-1$). 
(2) Not add any edge between this vertex and any of the previous vertices. 
In the mathematical discipline of graph theory, a matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set. 
Now Little Q is interested in checking whether a ''Cool Graph'' has perfect matching. Please write a program to help him. 
 

Input

The first line of the input contains an integer $T(1\leq T\leq50)$, denoting the number of test cases. 
In each test case, there is an integer $n(2\leq n\leq 100000)$ in the first line, denoting the number of vertices of the graph. 
The following line contains $n-1$ integers $a_2,a_3,...,a_n(1\leq a_i\leq 2)$, denoting the decision on each vertice.
 

Output

For each test case, output a string in the first line. If the graph has perfect matching, output ''Yes'', otherwise output ''No''. 
 

Sample Input

3
2
1
2
2
4
1 1 2
 

Sample Output

Yes
No
No
 
 
 
题目意思:有n个点,这里给出了n-1个数(第0个点没有操作,所以不用)表示每个点的操作状态,操作1表示当前点与之前出现的所有的点连成一条边,操作2代表什么也不做,问最后是否每一个点都有一个点与其配对(两两配对)。
 
解题思路:英语水平确实太差了,上来看到graph,以为是图论,因为图论的内容没有学习,很打怵,不过榜单上和我水平差不多的队友有做出来的,就明白这不是一道难题,其实这应该算是一道找规律的题,我们很容易知道当n为奇数的时候是不可能出现两两匹配的。当n为偶数时,用count表示前面有多少个未配对的点,如果前面有未配对的点则,若操作为1,,则count--,若操作为2则count++。如果前面所有的点都匹对成功则,若操作为1,,则count=1(因为前面没有点与其配对),若操作为2则count++,最后如果count=0,则说明完美匹配perfect matching。
 
 
 #include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
int main()
{
int t,n,i,count;
int a[];
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
count=;
for(i=; i<n; i++)
{
scanf("%d",&a[i]);
}
if(n%==)
{
printf("No\n");///奇数不可能配对
}
else
{
for(i=; i<n; i++)
{
if(a[i]==)
{
if(count==)
{
count=;
}
else
{
count--;
}
}
else
{
count++;
}
}
if(count==)
{
printf("Yes\n");
}
else
{
printf("No\n");
}
}
}
return ;
}
 看见有大佬写出了这样很简单的代码,我也学习一下:
 
 #include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
int main()
{
int t,n,i,j,a,count;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
count=;
for(i=; i<n; i++)
{
scanf("%d",&a);
if(a==||count==)
{
count++;
}
else
{
count--;
}
}
if(count==)
{
printf("Yes\n");
}
else
{
printf("No\n");
} }
return ;
}
 思路本质上是一样的。。。。。。
 
 

Graph Theory的更多相关文章

  1. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  2. The Beginning of the Graph Theory

    The Beginning of the Graph Theory 是的,这不是一道题.最近数论刷的实在是太多了,我要开始我的图论与树的假期生活了. 祝愿我吧??!ShuraK...... poj18 ...

  3. Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学

    Sasha and Interesting Fact from Graph Theory n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m} 然后就 ...

  4. CF1109D Sasha and Interesting Fact from Graph Theory

    CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计 ...

  5. HDU6029 Graph Theory 2017-05-07 19:04 40人阅读 评论(0) 收藏

    Graph Theory                                                                 Time Limit: 2000/1000 M ...

  6. Codeforces 1109D. Sasha and Interesting Fact from Graph Theory

    Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...

  7. 2018 Multi-University Training Contest 4 Problem L. Graph Theory Homework 【YY】

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6343 Problem L. Graph Theory Homework Time Limit: 2000 ...

  8. 2017中国大学生程序设计竞赛 - 女生专场(Graph Theory)

    Graph Theory Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)To ...

  9. HDU 6343.Problem L. Graph Theory Homework-数学 (2018 Multi-University Training Contest 4 1012)

    6343.Problem L. Graph Theory Homework 官方题解: 一篇写的很好的博客: HDU 6343 - Problem L. Graph Theory Homework - ...

随机推荐

  1. Change runlevel on CentOS 6.9/CentOS 7.5

    1:CentOS 6.9 # 0 - halt (Do NOT set initdefault to this) # 1 - Single user mode # 2 - Multiuser, wit ...

  2. 写shell脚本需要注意哪些地方----零基础必看

    shell脚本是完全靠自学的,每一步需要注意的问题都是我自己亲自实践出来的,对于大神可能看来是小儿科,但是对于新手,是必须注意的 一.首先执行 echo $SHELL查看本机的解释器, 二.开始写脚本 ...

  3. Spring security学习笔记(二)

    对比两种承载认证信息的方式: session vs token token验证方案: session验证方案: session即会话是将用户信息保存在服务端,根据请求携带的session_id,从服务 ...

  4. linux操作之软件安装(二)(源码安装)

    源码安装 linux上的软件大部分都是c语言开发的 , 那么安装需要gcc编译程序才可以进行源码安装. yum install -y gcc #先安装gcc 安装源码需要三个步骤 1) ./confi ...

  5. Linux服务器安全检测维护基础汇总/持续更新

    登陆系统查询可以用户 w命令可以显示在线用户,passwd -l xxx可以锁定xxx用户无法登陆,如果此时可以用户在线,使用kill命令踢下线 查看可疑进程 ps -ef命令锁定pid,或者pido ...

  6. mybatis入门(三):mybatis的基础特性

    mybatis的知识点: 1.mybatis和hibernate本质区别和应用场景 hibernate:是一个标准的ORM框架(Ojbect relation mapper对象关系映射).入门门槛较高 ...

  7. 苏州Uber优步司机奖励政策(8月31日至9月6日)

    当周最新司机奖励(8月31日至9月6日) 滴滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http: ...

  8. dubbo之基础应用

    一.Dubbo是Alibaba开源的分布式服务框架,它最大的特点是按照分层的方式来架构,使用这种方式可以使各个层之间解耦合(或者最大限度地松耦合).从服务模型的角度来看,Dubbo采用的是一种非常简单 ...

  9. Chromium添加一段新字符串

    参考:https://groups.google.com/a/chromium.org/forum/#!searchin/chromium-dev/tclib%7Csort:relevance/chr ...

  10. 180606-Linux下jdk中文乱码问题解决

    文章链接:https://liuyueyi.github.io/hexblog/2018/06/06/180606-Linux下jdk中文乱码问题解决/ linux下jdk中文乱码问题解决 之前遇到过 ...