传送门

听说是多项式求逆的模板题,以后不怕没地方练多项式求逆啦哈哈……

……

我们设使用一个氨基酸能组成质量为$n$的多肽数量这个数列为$\{a_n\}$,设它的生成函数为$A(x)$,显然有

\begin{align}A(x)=\sum_{i=0}^\infty \sum_{j=0}^m[C_j=i]\end{align}

即$A(x)$的$i$次方系数即为相对分子质量为$i$的氨基酸数量。

我们要求的是一个数列${b_n}$,它的第$n$项即为使用任意数目的氨基酸能组成质量为$n$的多肽数量,设它的生成函数为$B(x)$,那么有

\begin{align}A(x)=\sum_{i=0}^\infty B(x)^i\end{align}

右边化成封闭形式,得

\begin{align}A(x)=\frac 1{1-B(x)}\end{align}

多项式求逆即可,答案即为$[x^n]A(x)$。顺便一提,1005060097的原根是5。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=,p=,g=;
void NTT(int*,int,int);
void getinv(int*,int*,int);
int qpow(int,int,int);
int n,m,N=,x,A[maxn]={},B[maxn];
int main(){
freopen("polypeptide.in","r",stdin);
freopen("polypeptide.out","w",stdout);
scanf("%d%d",&n,&m);
while(N<=n)N<<=;
while(m--){
scanf("%d",&x);
A[x]=(A[x]+p-)%p;
}
A[]=(A[]+)%p;
getinv(A,B,N);
printf("%d",B[n]);
return ;
}
void NTT(int *A,int n,int tp){
for(int i=,j=,k;i<n-;i++){
k=n;
do j^=(k>>=);while(j<k);
if(i<j)swap(A[i],A[j]);
}
for(int k=;k<=n;k<<=){
int wn=qpow(g,(tp>?(p-)/k:(p-)/k*(long long)(p-)%(p-)),p);
for(int i=;i<n;i+=k){
int w=;
for(int j=;j<(k>>);j++,w=(long long)w*wn%p){
int a=A[i+j],b=(long long)w*A[i+j+(k>>)]%p;
A[i+j]=(a+b)%p;
A[i+j+(k>>)]=(a-b+p)%p;
}
}
}
if(tp<){
int inv=qpow(n,p-,p);
for(int i=;i<n;i++)A[i]=(long long)A[i]*inv%p;
}
}
void getinv(int *A,int *C,int n){
static int B[maxn];
fill(C,C+n,);
C[]=qpow(A[],p-,p);
for(int k=;k<=n;k<<=){
copy(A,A+k,B);
fill(B+k,B+(k<<),);
NTT(B,k<<,);
NTT(C,k<<,);
for(int i=;i<(k<<);i++)C[i]=C[i]*((-((long long)B[i]*C[i]%p)+p)%p)%p;
NTT(C,k<<,-);
fill(C+k,C+(k<<),);
}
}
int qpow(int a,int b,int p){
int ans=;
for(;b;b>>=,a=(long long)a*a%p)if(b&)ans=(long long)ans*a%p;
return ans;
}

其实我对NTT和生成函数只是刚入门而已……我们的征途是星辰大海……

COGS2259 异化多肽的更多相关文章

  1. [Nescafé41]异化多肽(多项式求逆元)

    2015年的题,应该是将形式幂级数引入国内的元老级题目. 大意:给定一个大小为m的正整数序列和n,问有多少种选法可以凑成n,每个数可以选多次,种类不同算不同方案.$n,m,C \leqslant 10 ...

  2. COGS 2259 异化多肽——生成函数+多项式求逆

    题目:http://cogs.pro:8080/cogs/problem/problem.php?pid=2259 详见:https://www.cnblogs.com/Zinn/p/10054569 ...

  3. COGS 2259 异化多肽 —— 生成函数+多项式求逆

    题目:http://cogs.pro:8080/cogs/problem/problem.php?pid=2259 如果构造生成函数是许多个 \( (1+x^{k}+x^{2k}+...) \) 相乘 ...

  4. AHOI2018训练日程(3.10~4.12)

    (总计:共90题) 3.10~3.16:17题 3.17~3.23:6题 3.24~3.30:17题 3.31~4.6:21题 4.7~4.12:29题 ZJOI&&FJOI(6题) ...

  5. CodeForces 632E Thief in a Shop

    题意:给你n种物品,每种无限个,问恰好取k个物品能组成哪些重量.n<=1000,k<=1000,每种物品的重量<=1000. 我们搞出选取一种物品时的生成函数,那么只要对这个生成函数 ...

  6. 基于tomcat与Spring的实现差异化配置方案

    起因 在实际开发过程中经常需要加载各种各样的配置文件..比如数据库的用户名密码,要加载的组件,bean等等..但是这种配置在各个环境中经常是不一样的....比如开发环境和测试环境,真实的生产环境.. ...

  7. (转)iOS Wow体验 - 第三章 - 用户体验的差异化策略

    本文是<iOS Wow Factor:Apps and UX Design Techniques for iPhone and iPad>第三章译文精选,其余章节将陆续放出.上一篇:Wow ...

  8. Android Gradle基于参数化配置实现差异化构建

    一.背景: 项目中有一些特殊的需求,如个别渠道集成腾讯bugly,个别渠道集成易观统计,不同的渠道集成不同的推送策略(如Oppo渠道优先Opush推送),不同的渠道拥有不同的第三方登录集成等等.这些需 ...

  9. Bing词典vs有道词典比对测试报告——功能篇之辅助功能,差异化功能及软件的效能

    1.辅助功能: 和有道相比,必应的词典加入了换肤功能,用户可以选择喜欢的颜色,而且必应的皮肤也比较多,这一点设计给必应增色不少. 相对而言,有道则加入了调节客户端字体的大小,如下,也比较人性化 2.差 ...

随机推荐

  1. CentOS6.9 ARM虚拟机扩容系统磁盘

    由于扩容磁盘的操作非同小可,一旦哪一步出现问题,就会导致分区损坏,数据丢失等一系列严重的问题,因此建议:在进行虚拟机分区扩容之前,一定要备份重要数据文件,并且先在测试机上验证以下步骤,再应用于您的生产 ...

  2. POJ3666 Making the Grade

    POJ3666 Making the Grade 题意: 给定一个长度为n的序列A,构造一个长度为n的序列B,满足b非严格单调,并且最小化S=∑i=1N |Ai-Bi|,求出这个最小值S,1<= ...

  3. Using Request Headers for Metadata Address

    问题描述 我将一个在本地调试正常的service部署到服务器后遇到了添加服务引用失败的问题.在把配置文件中基址使用的localhost替换成服务器的ip地址后问题得到了解决.但我感觉这并不是一个因为粗 ...

  4. jquery 实现省市二级联动

    效果: 源码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  5. linux命令行添加图形化界面

    安装一个图形化的包即可!! yum update grub2-common yum install fwupdate-efi yum groupinstall "GNOME Desktop& ...

  6. 第九届蓝桥杯大赛个人赛决赛(软件类)真题Java

    更新中.......... 同一年的题解:https://www.cnblogs.com/dgwblog/p/10111903.html   01 结果填空 (满分11分) 标题:年龄问题 s夫人一向 ...

  7. 使用FFmpeg进行视频抽取音频,之后进行语音识别转为文字

    1.首先需要下载FFmpeg: 2.Gradle依赖 def void forceVersion(details, group, version) { if (details.requested.gr ...

  8. LOJ565. 「LibreOJ Round #10」mathematican 的二进制(NTT)

    题目链接 https://loj.ac/problem/565 题解 首先,若进行所有操作之后成功执行的操作数为 \(m\),最终得到的数为 \(w\),那么发生改变的二进制位的数量之和(即代价之和) ...

  9. 3.nginx日志

    1. 自定义日志格式为json log_format json '{"@timestamp":"$time_iso8601",' '"@version ...

  10. 手写JDBC - 数据库、驱动信息存储在配置文件

    1. 将数据库.驱动信息存储在配置文件 configure.properties url=jdbc:mysql://localhost:3306/数据库名?serverTimezone=GMT& ...