public static void main(String[] argsArray) throws Exception {
//org.apache.spark.launcher.Main
checkArgument(argsArray.length > 0, "Not enough arguments: missing class name.");
/**
 * java -cp spark_home/lib/spark-assembly-1.6.0-hadoop2.6.0.jar org.apache.spark.launcher.Main  org.apache.spark.deploy.SparkSubmit
 *      --class org.apache.spark.repl.Main --name "Spark shell" --master spark://ip:7077
    这个main方法最终会将org.apache.spark.deploy.SparkSubmit --class org.apache.spark.repl.Main --name "Spark shell" --master spark://luyl152:7077
    给spark-class的 exec "${CMD[@]}"执行
 */ List<String> args = new ArrayList<>(Arrays.asList(argsArray));
//spark-shell执行时第1个参数就是org.apache.spark.deploy.SparkSubmit
String className = args.remove(0);//从args中移除org.apache.spark.deploy.SparkSubmit参数
//可以在spark-class或别的配制文件中 export SPARK_PRINT_LAUNCH_COMMAND=任何值,只要不为空即可
//可以用它来打印cmd,也就是spark-class的 exec "${CMD[@]}"中的值
boolean printLaunchCommand = !isEmpty(System.getenv("SPARK_PRINT_LAUNCH_COMMAND"));
AbstractCommandBuilder builder;//创建命令解析器
if (className.equals("org.apache.spark.deploy.SparkSubmit")) {
try {
//将参数解析到spark对应的变量中,如 --class的值 放到mainClass变量中。
//如果有多出来的参数则将该参数放到SparkSubmitCommandBuilder成员sparkArgs这个集合中
builder = new SparkSubmitCommandBuilder(args);
} catch (IllegalArgumentException e) {
printLaunchCommand = false;
System.err.println("Error: " + e.getMessage());
System.err.println(); MainClassOptionParser parser = new MainClassOptionParser();
try {
parser.parse(args);
} catch (Exception ignored) {
// Ignore parsing exceptions.
} List<String> help = new ArrayList<>();
if (parser.className != null) {
help.add(parser.CLASS);
help.add(parser.className);
}
help.add(parser.USAGE_ERROR);
builder = new SparkSubmitCommandBuilder(help);
}
} else {
//第一个参数如果不是:org.apache.spark.deploy.SparkSubmit,则使用SparkClassCommandBuilder,解析器
builder = new SparkClassCommandBuilder(className, args);
} Map<String, String> env = new HashMap<>();
List<String> cmd = builder.buildCommand(env);//这个在SparkSubmitCommandBuilder中重新实现了,不是抽象类中的函数
if (printLaunchCommand) {
System.err.println("Spark Command: " + join(" ", cmd));
System.err.println("========================================");
} if (isWindows()) {
System.out.println(prepareWindowsCommand(cmd, env));
} else {
// In bash, use NULL as the arg separator since it cannot be used in an argument.

    //返回有效的参数,会通过打印的方式给spark-class的 exec "${CMD[@]}"执行
    /**  '\0'和空格不是同一个概念。

        '\0'表示字符串结束符,代表字符串结束,而空格是一个普通字符,显示在文本中可以选中。

        '\0'的ASCII码为0,空格的ASCII码为32,两个不是同一个字符

        在计算机程序中通常使用'\0'表示字符串结束,空格为文本字符,二者完全不同
    */

      List<String> bashCmd = prepareBashCommand(cmd, env);
for (String c : bashCmd) {
System.out.print(c);//打印返回的命令字符,即被spark-class的CMD接收
System.out.print('\0');
}
}
}
 // org.apache.spark.launcher.SparkSubmitCommandBuilder
SparkSubmitCommandBuilder(List<String> args) {
// args参数是这些:--class org.apache.spark.repl.Main --name "Spark shell" --master spark://ip:7077
//或者:pyspark-shell-main --name PySparkShell
//或者: --master yarn --deploy-mode cluster --name Hbase --verbose --conf xxxx
//即PYSPARK_SHELL,SPARKR_SHELL,RUN_EXAMPLE这种运行的第一个参数就是这些类型的名称
this.allowsMixedArguments = false;
this.sparkArgs = new ArrayList<>();
boolean isExample = false;
List<String> submitArgs = args; if (args.size() > 0) {
switch (args.get(0)) {
//第一个参数值是pyspark-shell-main,如果python执行的
case PYSPARK_SHELL:
this.allowsMixedArguments = true;
appResource = PYSPARK_SHELL;
submitArgs = args.subList(1, args.size());
break; case SPARKR_SHELL: //"sparkr-shell-main"
this.allowsMixedArguments = true;
appResource = SPARKR_SHELL;
submitArgs = args.subList(1, args.size());
break; case RUN_EXAMPLE:
isExample = true;
submitArgs = args.subList(1, args.size());
} this.isExample = isExample;
//作用就是将spark-submit放进来的参数对应值赋到spark对应的变量中,如 --class的值 放到mainClass变量中
//submitArgs会去除PYSPARK_SHELL,SPARKR_SHELL,RUN_EXAMPLE名称参数
// OptionParser属于org.apache.spark.launcher.SparkSubmitCommandBuilder内部类
//private class OptionParser extends SparkSubmitOptionParser
//重新实现了handle系列的函数
OptionParser parser = new OptionParser();
parser.parse(submitArgs); //它的父类方法SparkSubmitOptionParser实现的
this.isAppResourceReq = parser.isAppResourceReq;
} else {
this.isExample = isExample;
this.isAppResourceReq = false;
}
}
 /**
* Parse a list of spark-submit command line options.
* <p>
* See SparkSubmitArguments.scala for a more formal description of available options.
*
* @throws IllegalArgumentException If an error is found during parsing.
* 参数是这些:--class org.apache.spark.repl.Main --name"Spark shell" --master spark://ip:7077. 
* 作用就是将spark-submit放进来的参数对应值赋到spark对应的变量中,如 --class的值 放到mainClass变量中
* org.apache.spark.launcher.SparkSubmitOptionParser(parse)
*/ protected final void parse(List<String> args) {
//spark-submit可以传sparkConf参数:--confPROP=VALUE ,参数可以看org.apache.spark.deploy.SparkSubmitArguments类最后面
//或spark-submit-h就可以查看
Pattern eqSeparatedOpt = Pattern.compile("(--[^=]+)=(.+)"); int idx = 0;
for (idx = 0; idx < args.size(); idx++) {
String arg = args.get(idx);
String value = null; Matcher m = eqSeparatedOpt.matcher(arg);
if (m.matches()) {
arg = m.group(1);//--conf PROP
value = m.group(2);//VALUE
} // Look for options with a value.
//该方法主要是找到spark-submit后面的带有--参数,如args 放进"--class",和opts二维数组进行匹配
//匹配到的还是返回--class,如果没有匹配到则null
String name = findCliOption(arg, opts);
if (name != null) {
if (value == null) {
if (idx == args.size() - 1) {//如果匹配了并且没有参数值则报错,如:只有 --class ,则size是1,idx此时0, 1-1=0
throw new IllegalArgumentException(
String.format("Missing argument for option '%s'.", arg));
}
idx++;
value = args.get(idx); //如果有值,则idx索引的下一位就是参数对应的值
}
//name就是spark-submit的参数如--class,而value就是参数对应的值
//OptionParser属于org.apache.spark.launcher.SparkSubmitCommandBuilder内部类
//private class OptionParser extends SparkSubmitOptionParser     
// 在它的自身OptionParser做的实现,作用就是将spark-submit放进来的参数对应值赋到spark对应的变量中      //如 --class的值放到mainClass变量中(里面实现很easy,就不写了)
if (!handle(name, value)) { //调用的是OptionParser类重新实现的handle函数
break;
}
continue;
} // Look for a switch.
// 如果上面没有匹配到,会再去匹配一下是否有出现-verbose这样参数
name = findCliOption(arg, switches);
if (name != null) {
if (!handle(name, null)) {//调用的是OptionParser类重新实现的handle函数
break;
}
continue;
} if (!handleUnknown(arg)) {//调用的是OptionParser类重新实现的handleUnknown函数
break;
}
} if (idx < args.size()) {
idx++;
}
//将多出来的参数加到 SparkSubmitCommandBuilder() {his.sparkArgs = new ArrayList<String>();..}
handleExtraArgs(args.subList(idx, args.size()));//调用的是OptionParser类重新实现的handleExtraArgs函数
}
//其中一些key的定义
protected final String CLASS = "--class";
protected final String CONF = "--conf";
protected final String DEPLOY_MODE = "--deploy-mode";
protected final String DRIVER_CLASS_PATH = "--driver-class-path";
protected final String DRIVER_CORES = "--driver-cores";
protected final String DRIVER_JAVA_OPTIONS = "--driver-java-options";
protected final String DRIVER_LIBRARY_PATH = "--driver-library-path";
protected final String DRIVER_MEMORY = "--driver-memory";
protected final String EXECUTOR_MEMORY = "--executor-memory";
protected final String FILES = "--files";
protected final String JARS = "--jars";
protected final String KILL_SUBMISSION = "--kill";
protected final String MASTER = "--master";
protected final String NAME = "--name";
protected final String PACKAGES = "--packages";
protected final String PACKAGES_EXCLUDE = "--exclude-packages";
protected final String PROPERTIES_FILE = "--properties-file";
protected final String PROXY_USER = "--proxy-user";
protected final String PY_FILES = "--py-files";
protected final String REPOSITORIES = "--repositories";
protected final String STATUS = "--status";
protected final String TOTAL_EXECUTOR_CORES = "--total-executor-cores"; // Options that do not take arguments.
protected final String HELP = "--help";
protected final String SUPERVISE = "--supervise";
protected final String USAGE_ERROR = "--usage-error";
protected final String VERBOSE = "--verbose";
protected final String VERSION = "--version"; // Standalone-only options. // YARN-only options.
protected final String ARCHIVES = "--archives";
protected final String EXECUTOR_CORES = "--executor-cores";
protected final String KEYTAB = "--keytab";
protected final String NUM_EXECUTORS = "--num-executors";
protected final String PRINCIPAL = "--principal";
protected final String QUEUE = "--queue"; /**
* This is the canonical list of spark-submit options. Each entry in the array contains the
* different aliases for the same option; the first element of each entry is the "official"
* name of the option, passed to {@link #handle(String, String)}.
* <p>
* Options not listed here nor in the "switch" list below will result in a call to
* {@link #handleUnknown(String)}.
* <p>
* These two arrays are visible for tests.
*/
final String[][] opts = {
{ ARCHIVES },
{ CLASS },
{ CONF, "-c" },
{ DEPLOY_MODE },
{ DRIVER_CLASS_PATH },
{ DRIVER_CORES },
{ DRIVER_JAVA_OPTIONS },
{ DRIVER_LIBRARY_PATH },
{ DRIVER_MEMORY },
{ EXECUTOR_CORES },
{ EXECUTOR_MEMORY },
{ FILES },
{ JARS },
{ KEYTAB },
{ KILL_SUBMISSION },
{ MASTER },
{ NAME },
{ NUM_EXECUTORS },
{ PACKAGES },
{ PACKAGES_EXCLUDE },
{ PRINCIPAL },
{ PROPERTIES_FILE },
{ PROXY_USER },
{ PY_FILES },
{ QUEUE },
{ REPOSITORIES },
{ STATUS },
{ TOTAL_EXECUTOR_CORES },
}; /**
* List of switches (command line options that do not take parameters) recognized by spark-submit.
*/
final String[][] switches = {
{ HELP, "-h" },
{ SUPERVISE },
{ USAGE_ERROR },
{ VERBOSE, "-v" },
{ VERSION },
};
private class OptionParser extends SparkSubmitOptionParser {

    boolean isAppResourceReq = true;
/**
*作用就是将spark-submit放进来的参数对应值赋到spark对应的变量中
*/
@Override
protected boolean handle(String opt, String value) {
switch (opt) {
case MASTER:
master = value;
break;
case DEPLOY_MODE:
deployMode = value;
break;
case PROPERTIES_FILE:
propertiesFile = value;
break;
case DRIVER_MEMORY:
conf.put(SparkLauncher.DRIVER_MEMORY, value);
break;
case DRIVER_JAVA_OPTIONS:
conf.put(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS, value);
break;
case DRIVER_LIBRARY_PATH:
conf.put(SparkLauncher.DRIVER_EXTRA_LIBRARY_PATH, value);
break;
case DRIVER_CLASS_PATH:
conf.put(SparkLauncher.DRIVER_EXTRA_CLASSPATH, value);
break;
case CONF:
String[] setConf = value.split("=", 2);
checkArgument(setConf.length == 2, "Invalid argument to %s: %s", CONF, value);
conf.put(setConf[0], setConf[1]);
break;
case CLASS:
// The special classes require some special command line handling, since they allow
// mixing spark-submit arguments with arguments that should be propagated to the shell
// itself. Note that for this to work, the "--class" argument must come before any
// non-spark-submit arguments.
mainClass = value;
if (specialClasses.containsKey(value)) {
allowsMixedArguments = true;
appResource = specialClasses.get(value);
}
break;
................................................
 @Override
public List<String> buildCommand(Map<String, String> env) //此处看一下SparkSubmitOptionParser.buildCommand(Map)这个方法
throws IOException, IllegalArgumentException {
//PYSPARK_SHELL_RESOURCE表示python,SPARKR_SHELL_RESOURCE表示r语言
if (PYSPARK_SHELL.equals(appResource) && isAppResourceReq) {
return buildPySparkShellCommand(env);
} else if (SPARKR_SHELL.equals(appResource) && isAppResourceReq) {
return buildSparkRCommand(env);
} else {
//这个env就是一个空的Map,会调用buildSparkSubmitCommand()方法
return buildSparkSubmitCommand(env);
}
}
//org.apache.spark.launcher.SparkSubmitCommandBuilder$buildSparkSubmitCommand)
private List<String> buildSparkSubmitCommand(Map<String, String> env)
throws IOException, IllegalArgumentException {
// Load the properties file and check whether spark-submit will be running the app's driver
// or just launching a cluster app. When running the driver, the JVM's argument will be
// modified to cover the driver's configuration.
//加载属性文件,并检查spark-submit是否正在运行driver的应用程序或仅启动集群应用程序。
// 在运行驱动程序时,JVM的参数将被修改以涵盖驱动程序的配置。
Map<String, String> config = getEffectiveConfig();
boolean isClientMode = isClientMode(config);
//默认如果standalone不匹配--deploy-mode cluster就是client,所以这个值是true 
// 这个DRIVER_EXTRA_CLASSPATH在client模式是不能直接在SparkConf中设置的,因为driver的JVM已经被Spark-submit通过反射启动起来了 
// 而是通过参数:--driver-class-path来设置的 
// 这个DRIVER_EXTRA_CLASSPATH在client模式是不能直接在SparkConf中设置的,
// 因为driver的JVM已经被Spark-submit通过反射启动起来了,应该通过参数:--driver-class-path来设置的
String extraClassPath = isClientMode ? config.get(SparkLauncher.DRIVER_EXTRA_CLASSPATH) : null; List<String> cmd = buildJavaCommand(extraClassPath);
// Take Thrift Server as daemon
if (isThriftServer(mainClass)) {
addOptionString(cmd, System.getenv("SPARK_DAEMON_JAVA_OPTS"));
}
//SPARK_SUBMIT_OPTS就是在spark-shell中提到的,需要将java的classpath手动设置到scala中
// SPARK_SUBMIT_OPTS="$SPARK_SUBMIT_OPTS-Dscala.usejavacp=true"
addOptionString(cmd, System.getenv("SPARK_SUBMIT_OPTS")); // We don't want the client to specify Xmx. These have to be set by their corresponding
// memory flag --driver-memory or configuration entry spark.driver.memory
String driverExtraJavaOptions = config.get(SparkLauncher.DRIVER_EXTRA_JAVA_OPTIONS);
if (!isEmpty(driverExtraJavaOptions) && driverExtraJavaOptions.contains("Xmx")) {
String msg = String.format("Not allowed to specify max heap(Xmx) memory settings through " +
"java options (was %s). Use the corresponding --driver-memory or " +
"spark.driver.memory configuration instead.", driverExtraJavaOptions);
throw new IllegalArgumentException(msg);
} if (isClientMode) {
// Figuring out where the memory value come from is a little tricky due to precedence.
// Precedence is observed in the following order:
// - explicit configuration (setConf()), which also covers --driver-memory cli argument.
// - properties file.
// - SPARK_DRIVER_MEMORY env variable
// - SPARK_MEM env variable
// - default value (1g)
// Take Thrift Server as daemon
String tsMemory =
isThriftServer(mainClass) ? System.getenv("SPARK_DAEMON_MEMORY") : null;
String memory = firstNonEmpty(tsMemory, config.get(SparkLauncher.DRIVER_MEMORY),
System.getenv("SPARK_DRIVER_MEMORY"), System.getenv("SPARK_MEM"), DEFAULT_MEM);
cmd.add("-Xmx" + memory);//最大、小堆内存默认是1g
addOptionString(cmd, driverExtraJavaOptions);
mergeEnvPathList(env, getLibPathEnvName(),
config.get(SparkLauncher.DRIVER_EXTRA_LIBRARY_PATH));
} cmd.add("org.apache.spark.deploy.SparkSubmit");
//buildSparkSubmitArgs()返回list将上面spark-submit参数注入进来的参数及对应值取出来
cmd.addAll(buildSparkSubmitArgs());
return cmd;
}
//org.apache.spark.launcher.SparkSubmitCommandBuilder$buildSparkSubmitArgs
List<String> buildSparkSubmitArgs() {
List<String> args = new ArrayList<>();
SparkSubmitOptionParser parser = new SparkSubmitOptionParser(); if (!allowsMixedArguments && isAppResourceReq) {
checkArgument(appResource != null, "Missing application resource.");
} if (verbose) {
args.add(parser.VERBOSE);
} if (master != null) {
args.add(parser.MASTER);
args.add(master);
} if (deployMode != null) {
args.add(parser.DEPLOY_MODE);
args.add(deployMode);
} if (appName != null) {
args.add(parser.NAME);
args.add(appName);
} for (Map.Entry<String, String> e : conf.entrySet()) {
args.add(parser.CONF);
args.add(String.format("%s=%s", e.getKey(), e.getValue()));
} if (propertiesFile != null) {
args.add(parser.PROPERTIES_FILE);
args.add(propertiesFile);
} if (isExample) {
jars.addAll(findExamplesJars());
} if (!jars.isEmpty()) {
args.add(parser.JARS);
args.add(join(",", jars));
} if (!files.isEmpty()) {
args.add(parser.FILES);
args.add(join(",", files));
}
...................................................
//CMD的命令如下
/usr/java/jdk1.7.0_79/bin/java -cp /opt/cloudera/parcels/SPARK2-2.0.0.cloudera.beta1-1.cdh5.7.0.p0.108015/lib/spark2/conf/:/opt/cloudera/parcels/SPARK2-2.0.0.cloudera.beta1-1.cdh5.7.0.p0.108015/lib/spark2/jars/*:/opt/cloudera/parcels/SPARK2-2.0.0.cloudera.beta1-1.cdh5.7.0.p0.108015/lib/spark2/conf/yarn-conf/ -Dscala.usejavacp=true -Xmx1g -XX:MaxPermSize=256m org.apache.spark.deploy.SparkSubmit --class org.apache.spark.repl.Main --name Spark shell spark-shell
//或者
/usr/java/jdk1.7.0_79/bin/java -cp /opt/cloudera/parcels/SPARK2-2.0.0.cloudera.beta1-1.cdh5.7.0.p0.108015/lib/spark2/conf/:/opt/cloudera/parcels/SPARK2-2.0.0.cloudera.beta1-1.cdh5.7.0.p0.108015/lib/spark2/jars/*:/etc/hadoop/:/etc/hadoop/conf.cloudera.yarn/ -XX:MaxPermSize=256m org.apache.spark.deploy.SparkSubmit --master yarn --deploy-mode cluster --conf spark.driver.extraClassPath=/opt/cloudera/parcels/CDH/lib/hbase/lib/* --conf spark.scheduler.mode=FAIR --conf spark.executorEnv.JAVA_HOME=/usr/java/jdk1.8 --conf spark.yarn.appMasterEnv.JAVA_HOME=/usr/java/jdk1.8 --conf spark.yarn.maxAppAttempts=1 --class opHbase.opHbase.TopHbase --name Hbase --verbose --files /etc/hadoop/conf/log4j.properties,/etc/hive/conf/hive-site.xml --jars hdfs://10.8.18.74:8020/ada/spark/share/tech_component/tc.plat.spark.jar,hdfs://10.8.18.74:8020/ada/spark/share/tech_component/bigdata4i-1.0.jar,hdfs://10.8.18.74:8020/ada/spark/share/tech_component/bigdata-sparklog-1.0.jar,hdfs://108474.server.bigdata.com.cn:8020/user/lyy/App/tc.app.test.opHbase-1.0.jar,hdfs://10.8.18.74:8020/ada/spark/share/tech_component/mysql-connector-java-5.1.24-bin.jar hdfs://108474.server.bigdata.com.cn:8020/user/lyy/App/opHbase.opHbase.jar loglevel=ALL path=hdfs://108474.server.bigdata.com.cn:8020/user/lyy/data/hfile hbtab=hbase_tes

org.apache.spark.launcher.Main源码分析的更多相关文章

  1. 【原】Spark中Client源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Client源码分析(一)http://www.cnblogs.com/yourarebest/p/5313006.html DriverClient中的 ...

  2. Spark Scheduler模块源码分析之TaskScheduler和SchedulerBackend

    本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继 ...

  3. Spark Scheduler模块源码分析之DAGScheduler

    本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Ac ...

  4. Spark RPC框架源码分析(一)简述

    Spark RPC系列: Spark RPC框架源码分析(一)运行时序 Spark RPC框架源码分析(二)运行时序 Spark RPC框架源码分析(三)运行时序 一. Spark rpc框架概述 S ...

  5. Spark RPC框架源码分析(二)RPC运行时序

    前情提要: Spark RPC框架源码分析(一)简述 一. Spark RPC概述 上一篇我们已经说明了Spark RPC框架的一个简单例子,Spark RPC相关的两个编程模型,Actor模型和Re ...

  6. 【原】Spark中Master源码分析(二)

    继续上一篇的内容.上一篇的内容为: Spark中Master源码分析(一) http://www.cnblogs.com/yourarebest/p/5312965.html 4.receive方法, ...

  7. 【原】 Spark中Worker源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Worker源码分析(一)http://www.cnblogs.com/yourarebest/p/5300202.html 4.receive方法, r ...

  8. Spark RPC框架源码分析(三)Spark心跳机制分析

    一.Spark心跳概述 前面两节中介绍了Spark RPC的基本知识,以及深入剖析了Spark RPC中一些源码的实现流程. 具体可以看这里: Spark RPC框架源码分析(二)运行时序 Spark ...

  9. Spark中决策树源码分析

    1.Example 使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发. """ Decision Tree Classifica ...

随机推荐

  1. JS异步编程 (1)

    JS异步编程 (1) 1.1 什么叫异步 异步(async)是相对于同步(sync)而言的,很好理解. 同步就是一件事一件事的执行.只有前一个任务执行完毕,才能执行后一个任务.而异步比如: setTi ...

  2. REST解惑

    本文是「架构风格:你真的懂REST吗?」的补充! REST全称是Representational State Transfer,目前普遍接受的中文翻译为「表述性状态转移」! 即使翻译过来了,你依然有一 ...

  3. Knowledge Point 20180308 Dead Code

    不知道有没有前辈注意过,当你编写一段“废话式的代码时”会给出一个Dead Code警告,点击警告,那么你所写的废物代码会被编译器消除,那么如果你不理睬这个警告呢?编译后会是什么样的呢?下面我们写点代码 ...

  4. oracle在线迁移同步数据,数据库报错

    报需要升级的错误,具体处理步骤如下: 一.错误信息 SQL> alter database open ;alter database open resetlogs*ERROR at line 1 ...

  5. 国产Linux下开发正式开工(deepin)

    配置开发环境 1.一般工具 在深度商店安装QQ,微信,安装一般软件WPS,Navicat数据库工具,文本编辑notepadqq. 影视娱乐爱奇艺,优酷,酷狗. 2.安装主要的开发环境 (1)c# 深度 ...

  6. Redis支持的五种数据类型

    redis支持的五种数据类型: 1.string(字符串) 2.hash(哈希) Redis hash 是一个键值(key=>value)对集合. Redis hash是一个string类型的f ...

  7. Python提高篇

    Python提高篇 1.模块 1)模块定义 模块就是py文件,可以是你自己写的,也可以是python当中自带的工具,当你在某个py文件下想要引用其他模块的功能,就需要你把你把该py文件导入. 2)导入 ...

  8. python 自定义函数表达式 拟合求系数

    https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html https://docs.scipy.org/doc/scipy/ ...

  9. 从零开始一个http服务器(二)-请求request解析

    从零开始一个http服务器 (二) 代码地址 : https://github.com/flamedancer/cserver git checkout step2 解析http request 观察 ...

  10. ISAP学习笔记

    学完了ISAP,感觉心情舒畅,毕竟ISAP比Dinic好一点. 说到底ISAP其实是Dinic(不熟悉Dinic的人去我的博客找猴子课堂----最大流与最小割(看看思想),已经置顶)优化版,熟悉的人知 ...