Frogs' Neighborhood(POJ1659+Havel-Hakimi定理)
题目链接:http://poj.org/problem?id=1659
题目:
题意:根据他给你的每个点的度数构造一张无向图。
思路:自己WA了几发(好菜啊……)后看到discuss才知道这个要用Havel-Hakimi定理,就跑去搜,这个定理很好理解,想了解的看官请点击链接:http://blog.51cto.com/sbp810050504/883904。
代码实现如下:
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<ll, int> pli;
typedef pair<int, ll> pil;;
typedef pair<int, int> pii;
typedef unsigned long long ull; #define lson i<<1
#define rson i<<1|1
#define bug printf("*********\n");
#define FIN freopen("D://code//in.txt", "r", stdin);
#define debug(x) cout<<"["<<x<<"]" <<endl;
#define IO ios::sync_with_stdio(false),cin.tie(0); const double eps = 1e-;
const int mod = ;
const int maxn = 1e6 + ;
const double pi = acos(-);
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f; int t, n;
int mp[][]; struct node {
int id, w;
bool operator < (const node& x) const {
return w > x.w;
}
}a[]; int main() {
//FIN;
scanf("%d", &t);
for(int icase = ; icase <= t; icase++) {
if(icase != ) printf("\n");
memset(mp, , sizeof(mp));
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%d", &a[i].w);
a[i].id = i;
}
int flag = ;
for(int i = ; i <= n; i++) {
sort(a + , a + n + );
for(int j = ; j <= a[].w; j++) {
a[j+].w--;
mp[a[].id][a[j+].id] = mp[a[j+].id][a[].id] = ;
}
a[].w = ;
for(int j = ; j <= n; j++) {
if(a[j].w < ) {
flag = ;
break;
}
}
if(!flag) break;
}
if(!flag) puts("NO");
else {
puts("YES");
for(int i = ; i <= n; i++) {
for(int j = ; j <= n; j++) {
printf("%d%c", mp[i][j], j == n ? '\n' : ' ');
}
}
}
}
return ;
}
Frogs' Neighborhood(POJ1659+Havel-Hakimi定理)的更多相关文章
- POJ1659 Frogs' Neighborhood(Havel–Hakimi定理)
题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这 ...
- POJ1659 Frogs' Neighborhood(Havel定理)
给一个无向图的度序列判定是否可图化,并求方案: 可图化的判定:d1+d2+……dn=0(mod 2).关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环. 可简单图化的判定(Have ...
- POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 9897 Accepted: 41 ...
- POJ1659 Frogs' Neighborhood(青蛙的邻居) Havel-Hakimi定理
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 8729 Accepted: 36 ...
- POJ 1659 Frogs' Neighborhood(Havel-Hakimi定理)
题目链接: 传送门 Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Description 未名湖附近共有N个大小湖泊L ...
- POJ 1659 Frogs' Neighborhood (Havel--Hakimi定理)
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 10545 Accepted: 4 ...
- poj1659 Frogs' Neighborhood
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 10239 Accepted: 4 ...
- poj 1659 Frogs' Neighborhood (贪心 + 判断度数序列是否可图)
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 6076 Accepted: 26 ...
- poj 1659 Frogs' Neighborhood( 青蛙的邻居)
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 9639 Accepted: 40 ...
- Frogs' Neighborhood
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 7920 Accepted: 33 ...
随机推荐
- lintcode-171-乱序字符串
171-乱序字符串 给出一个字符串数组S,找到其中所有的乱序字符串(Anagram).如果一个字符串是乱序字符串,那么他存在一个字母集合相同,但顺序不同的字符串也在S中. 注意事项 所有的字符串都只包 ...
- iOS 出现错误reason: image not found的解决方案
在制作framework时遇到真机运行时导致的reason: image not found允许崩溃的问题,下面是我的解决方案: 首先我们分析一下出现这种情况的原因,原因就是framework找不到镜 ...
- ios::sync_with_stdio(false)提高C++读写速度
版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:ios::sync_with_stdio(false)提高C++读写速度 本文地址:h ...
- windows批处理学习(for和字符串)---03
[1]for命令简介 先把for循环与for命令类比一下,这样学习理解快. for 循环语句,一般格式如下: 1 for (表达式1;表达式2;表达式3) 2 { 3 循环体; 4 } 1. 表达式1 ...
- shiro学习详解(开篇)
一.前言 要开始接触公司另外一个项目了,RX和我说了下整个项目框架的结构,其中提到权限的控制是通过shiro来处理的,对我而言又是一个全新的知识点,于是今天花了一点时间去学习shiro的使用,看了好几 ...
- 使用Gulp实现网页自动刷新:gulp-connect
入门指南 1. 全局安装 gulp: npm install --global gulp 2. 作为项目的开发依赖(devDependencies)安装: npm install --save-dev ...
- NetScaler ‘Counters’ Grab-Bag!
NetScaler ‘Counters’ Grab-Bag! https://www.citrix.com/blogs/author/andrewre/ https://www.citrix.com/ ...
- libsvm 用在 婚介数据集中 预测 用户配对
分类前具备的数据集: 书本第九章数据集(训练集):agesonly.csv和matchmaker.csv. agesonly.csv 格式是: 男年龄,女年龄,是否匹配成功 24,30,1 30,4 ...
- 【题解】SHOI2014概率充电器
首先发现答案就是每个节点有电的概率之和.有电的概率牵扯太广不好求,所以转化为求没有电的概率.这题最难的部分在于:一个节点如果有电,可以来自儿子,也可以来自父亲.我们考虑将这两个部分分离开来:建立状态 ...
- javascript实用例子
js学习笔记,别错过!很有用的. /////////////////////////////////////////////////////////////////////////////////// ...