mex

Time Limit: 20 Sec  Memory Limit: 128 MB
[Submit][Status][Discuss]

Description

  有一个长度为n的数组{a1,a2,...,an}。m次询问,每次询问一个区间内最小没有出现过的自然数。

Input

  第一行n,m。
  第二行为n个数。
  从第三行开始,每行一个询问l,r。

Output

  一行一个数,表示每个询问的答案。

Sample Input

  5 5
  2 1 0 2 1
  3 3
  2 3
  2 4
  1 2
  3 5

Sample Output

  1
  2
  3
  0
  3

HINT

  1<=n,m<=200000, 0<=ai<=1e9

Solution

  首先,权值>n的显然是没有用的,最多排满1~n。然后我们直接使用莫队,对权值分块,查询的时候看一下这个块里面权值数是否满了,即可做到O(sqrt(n))的查询。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ;
const int INF = ; int n,m,Q,num;
int a[ONE],block[ONE];
int Ans[ONE];
int C[ONE],Bc[ONE]; struct power
{
int id;
int l,r;
}oper[ONE]; int cmp(const power &a,const power &b)
{
if(block[a.l] != block[b.l]) return block[a.l] < block[b.l];
return a.r < b.r;
} int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void increa(int x) {if(x>n) return; C[x]++; if(C[x]==) Bc[block[x]]++;}
void reduce(int x) {if(x>n) return; C[x]--; if(C[x]==) Bc[block[x]]--;} int Query()
{
int pos = ;
for(int i=;i<=num;i++)
if(Bc[i] < Q) {pos = i; break;}
for(int i=(pos-)*Q+;i<=n+;i++)
if(!C[i])
return i-;
} int main()
{
n=get(); m=get();
Q = sqrt(n); num = (n-)/Q+;
for(int i=;i<=n;i++)
a[i] = get()+, block[i] = (i-)/Q+;
for(int i=;i<=m;i++)
{
oper[i].id = i;
oper[i].l = get(); oper[i].r = get();
} sort(oper+, oper+m+, cmp); int l = , r = ;
for(int i=;i<=m;i++)
{
while(r < oper[i].r) increa(a[++r]);
while(oper[i].l < l) increa(a[--l]);
while(r > oper[i].r) reduce(a[r--]);
while(oper[i].l > l) reduce(a[l++]);
Ans[oper[i].id] = Query();
} for(int i=;i<=m;i++)
printf("%d\n", Ans[i]);
}

【BZOJ3339&&3585】mex [莫队][分块]的更多相关文章

  1. [BZOJ3585]mex(莫队+分块)

    显然可以离线主席树,这里用莫队+分块做.分块的一个重要思想是实现修改与查询时间复杂度的均衡,这里莫队和分块互相弥补. 考虑暴力的分块做法,首先显然大于n的数直接忽略,于是将值域分成sqrt(n)份,每 ...

  2. Bzoj 3339: Rmq Problem && Bzoj 3585: mex 莫队,树状数组,二分

    3339: Rmq Problem Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 833  Solved: 397[Submit][Status][D ...

  3. [BZOJ 3585] mex 【莫队+分块】

    题目链接:BZOJ - 3585 题目分析 区间mex,即区间中没有出现的最小自然数. 那么我们使用一种莫队+分块的做法,使用莫队维护当前区间的每个数字的出现次数. 然后求mex用分块,将权值分块(显 ...

  4. 【BZOJ3585/3339】mex 莫队算法+分块

    [BZOJ3585]mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. ...

  5. BZOJ_3585_mex && BZOJ_3339_Rmq Problem_莫队+分块

    BZOJ_3585_mex && BZOJ_3339_Rmq Problem_莫队+分块 Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一 ...

  6. 【bzoj4129】Haruna’s Breakfast 带修改树上莫队+分块

    题目描述 给出一棵树,点有点权.支持两种操作:修改一个点的点权,查询链上mex. 输入 第一行包括两个整数n,m,代表树上的结点数(标号为1~n)和操作数.第二行包括n个整数a1...an,代表每个结 ...

  7. Bzoj 3236: [Ahoi2013]作业 莫队,分块

    3236: [Ahoi2013]作业 Time Limit: 100 Sec  Memory Limit: 512 MBSubmit: 1113  Solved: 428[Submit][Status ...

  8. BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块

    BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块 Description Autumn和Bakser又在研究Gty的妹子序列了 ...

  9. BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块

    题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...

随机推荐

  1. JSON解析与序列化

    JSON之所以流行,拥有与JavaScript类似的语法并不是全部原因.更重要的一个原因是,可以把JSON数据结构解析为有用的 JavaScript对象.与XML数据结构要解析成DOM文档而且从中提取 ...

  2. Java中的线程的优先级

    Java 中线程优先级简介: 1. Java 提供一个线程调度器来监控程序中启动后进入就绪状态的所有线程. 按照线程的优先级决定应该调度哪个线程来执行. 2. 线程的优先级用数字表示, 范围从 1 到 ...

  3. 敏捷冲刺Day1

    前言: 之前的各种对教务系统的分析,再加上我们两三天的讨论和一个小时的站立会议,我们做出最终的决定.--我们决定换个项目主题,将原来的教务辅助系统换成现在的校园帮帮帮服务,并在之后会将完成后的计划书附 ...

  4. MyBatis配置和日志

    MyBatis最关键的组成部分是SqlSessionFactory,我们可以从中获取SqlSession,并执行映射的SQL语句.SqlSessionFactory对象可以通过基于XML的配置信息或者 ...

  5. IO Model- 同步,异步,阻塞,非阻塞

    同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出 ...

  6. Ajax在jQuery中的应用(加载异步数据、请求服务器数据)

    加载异步数据 jQuery中的load()方法 load(url,[data],[callback]) url:被加载的页面地址 [data]:可选项表示发送到服务器的数据,其格式为 key/valu ...

  7. 第54天:原生js实现轮播图效果

    一.轮播图的原理: 一系列的大小相等的图片平铺,利用CSS布局只显示一张图片,其余隐藏.通过计算偏移量利用定时器实现自动播放,或通过手动点击事件切换图片. 二.Html布局 首先父容器containe ...

  8. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

  9. [洛谷P4592][TJOI2018]异或

    题目大意:有一棵$n$个点的树,第$i$个点权值为$w_i$,有两种操作: $1\;x\;y:$询问节点$x$的子树中与$y$异或结果的最大值 $2\;x\;y\;z:$询问路径$x$到$y$上点与$ ...

  10. PCA误差

    我们知道,PCA是用于对数据做降维的,我们一般用PCA把m维的数据降到k维(k < m). 那么问题来了,k取值多少才合适呢? PCA误差 PCA的原理是,为了将数据从n维降低到k维,需要找到k ...