思路:先把没有进行的场次规定双方都为负,对于x胜y负 变为x + 1胜 y - 1 负所需要的代价为 2 * C[ i ] * x  - 2 * D[ i ] * y + C[ i ] + D[ i ],

我们根据这个拆边建图,对于a和b进行的一场w, w流出的流量为1,并指向a 和 b,然后跑费用流。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PII pair<int, int>
#define y1 skldjfskldjg
#define y2 skldfjsklejg using namespace std; const int N = + ;
const int M = 2e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 +; int n, m, win[N], lose[N], C[N], D[N], ans[N], cnt[N], S, T;
int head[N], pre[N], dist[N], edgenum;
bool vis[N];
PII a[N]; struct Edge {
int from, to, cap, flow, cost, next;
} edge[M]; void init() {
edgenum = ;
memset(head, -, sizeof(head));
} void addEdge(int u, int v, int w, int c) {
Edge E1 = {u, v, w, , c, head[u]};
edge[edgenum] = E1;
head[u] = edgenum++;
Edge E2 = {v, u, , , -c, head[v]};
edge[edgenum] = E2;
head[v] = edgenum++;
} bool SPFA(int s, int t) {
queue<int> Q;
memset(dist, INF, sizeof(dist));
memset(vis, false, sizeof(vis));
memset(pre, -, sizeof(pre));
dist[s] = ; vis[s] = true; Q.push(s);
while(!Q.empty()) {
int u = Q.front(); Q.pop(); vis[u] = false;
for(int i = head[u]; i != -; i = edge[i].next) {
Edge E = edge[i];
if(dist[E.to] > dist[u] + E.cost && E.cap > E.flow) {
dist[E.to] = dist[u] + E.cost;
pre[E.to] = i;
if(!vis[E.to]) {
vis[E.to] = true;
Q.push(E.to);
}
}
}
}
return pre[t] != -;
} void MCMF(int s, int t, LL &cost, int &flow) {
flow = ; cost = ;
while(SPFA(s, t)) {
int Min = INF;
for(int i = pre[t]; i != -; i = pre[edge[i^].to]) {
Edge E = edge[i];
Min = min(Min, E.cap - E.flow);
}
for(int i = pre[t]; i != -; i = pre[edge[i^].to]) {
edge[i].flow += Min;
edge[i^].flow -= Min;
cost += edge[i].cost * Min;
}
flow += Min;
}
} int main() {
init();
scanf("%d%d", &n, &m);
S = , T = n + m + ;
for(int i = ; i <= n; i++) {
scanf("%d%d%d%d", &win[i], &lose[i], &C[i], &D[i]);
cnt[i] = win[i] + lose[i];
} for(int i = ; i <= m; i++) {
scanf("%d%d", &a[i].fi, &a[i].se);
addEdge(S, i, , );
addEdge(i, m + a[i].fi, , );
addEdge(i, m + a[i].se, , );
cnt[a[i].fi]++; cnt[a[i].se]++;
} LL ans = ;
for(int i = ; i <= n; i++) {
ans += 1ll * C[i] * win[i] * win[i] + 1ll * D[i] * (cnt[i] - win[i]) * (cnt[i] - win[i]);
}
for(int i = ; i <= n; i++) {
int num = cnt[i] - lose[i] - win[i];
int x = win[i], y = cnt[i] - win[i]; while(num--) {
addEdge(m + i, T, , * C[i] * x - * D[i] * y + C[i] + D[i]);
x++; y--;
}
} LL cost; int flow;
MCMF(S, T, cost, flow);
printf("%lld\n", ans + cost);
return ;
} /*
*/

bzoj 1449 费用流的更多相关文章

  1. bzoj 3171 费用流

    每个格拆成两个点,出点连能到的点的入点,如果是箭头指向 方向费用就是0,要不就是1,源点连所有出点,所有入点连 汇点,然后费用流 /********************************** ...

  2. BZOJ 1061费用流

    思路: 我们可以列出几个不等式 用y0带进去变成等式 下-上 可以消好多东西 我们发现 等式左边的加起来=0 可以把每个方程看成一个点 正->负 连边 跑费用流即可 //By SiriusRen ...

  3. BZOJ 1283 费用流

    思路: 最大费用最大流 i->i+1 连边k 费用0 i->i+m (大于n的时候就连到汇) 连边1 费用a[i] //By SiriusRen #include <queue> ...

  4. bzoj 1070 费用流

    //可以网络流,但是要怎么分配每辆车让谁维修以及维修顺序呢.可以考虑每辆车维修时间对总结果的贡献,把每个修车人拆成n个点共n*m个点, //n辆车连向这n*m个点,流量1,费用k*修车时间,其中k(1 ...

  5. bzoj 2668 费用流

    我们可以把初始状态转化为目标状态这一约束转化为将黑子移动到目标状态所需要的最少步数. 除了初始点和目标点之外,剩下的点如果被经过那么就会被交换两次,所以我们将一个点拆成3个点,a,b,c,新建附加源点 ...

  6. bzoj 2245 费用流

    比较裸 源点连人,每个人连自己的工作,工作连汇,然后因为人的费用是 分度的,且是随工作数非降的,所以我们拆边,源点连到每个人s+1条边 容量是每段的件数,费用是愤怒 /**************** ...

  7. BZOJ 3280 费用流

    思路: 同BZOJ 1221 //By SiriusRen #include <queue> #include <cstdio> #include <cstring> ...

  8. BZOJ 4514 费用流

    思路: 懒得写了 http://blog.csdn.net/werkeytom_ftd/article/details/51277482 //By SiriusRen #include <que ...

  9. [bzoj 1449] 球队收益(费用流)

    [bzoj 1449] 球队收益(费用流) Description Input Output 一个整数表示联盟里所有球队收益之和的最小值. Sample Input 3 3 1 0 2 1 1 1 1 ...

随机推荐

  1. find_in_set 函数使用方法

    find_in_set 函数使用方法 个例子来说: 有个文章表里面有个type字段,它存储的是文章类型,有 1头条.2推荐.3热点.4图文...1,12,13 等等 . 现在有篇文章他既是 头条,又是 ...

  2. Codeforces Round #398 (Div. 2) B,C

    B. The Queue time limit per test 1 second memory limit per test 256 megabytes input standard input o ...

  3. web开发环境和要求配置

    对于eclipse,有很多版本,但要开发WEB程序,需要用到j2ee版本,如果是winform或android 用不带ee的版本就行,两者的明显区别是在看帮助->关于->Eclipse J ...

  4. Scrapy中的Callback如何传递多个参数

    在scrapy提交一个链接请求是用 Request(url,callback=func) 这种形式的,而parse只有一个response参数,如果自定义一个有多参数的parse可以考虑用下面的方法实 ...

  5. 实体框架(Entity Framework)快速入门

    实体 框架 (Entity Framework )简介 实体框架Entity Framework 是 ADO .NET 中的一组支持 开发 面向数据的软件应用程序的技术.是微软的一个ORM框架. OR ...

  6. SQL Server 代理(已禁用代理 XP)

    sp_configure 'show advanced options', 1; GO RECONFIGURE WITH OVERRIDE; GO sp_configure 'Agent XPs', ...

  7. Proxmap Sort

    这个排序是桶排序和基数排序的改进,理解了前两者,这个排序很容易理解 先回忆下桶排序是怎么回事,它与桶的区别在于入桶规则,桶排序里是1入1号桶,2入2号桶 这个排序把数字分区了,然后给出一个所谓的键,例 ...

  8. iOS 网络请求--- 配置info.plist文件

    一.配置info.plist <key>NSAppTransportSecurity</key> <dict> <key>NSAllowsArbitra ...

  9. ReaderWriterLockSlim 类

    今天在看Nop源码时,PluginManager中用到了ReaderWriterLockSlim类,于是简单做个笔记. ReaderWriterLockSlim 表示用于管理资源访问的锁定状态,可实现 ...

  10. 大聊Python----SocketServer

    什么是SocketServer? SocketServer的最主要的作用是实现并发处理,也就是可以多个用户同时上传和下载文件. socketserver模块简化了编写网络服务器的任务. sockets ...