1 Spark源码定制选择从Spark Streaming入手 

我们从第一课就选择Spark子框架中的SparkStreaming。

那么,我们为什么要选择从SparkStreaming入手开始我们的Spark源码版本定制之路?

有下面几个方面的理由:

1)Spark大背景

Spark 最开始没有我们今天看到的Spark Streaming、GraphX、Machine Learning、Spark SQL和Spark R等相关子框架内容,最开始就只有很原始的Spark Core。我们要做Spark源码定制,做自己的发行版本,以SparkStreaming为切入点,Spark Streaming本身是 Spark Core上的一个子框架,所以我们透过一个子框架的彻底研究,肯定可以精通Spark力量的源泉和所有问题的解决之道;

2)为什么不选Spark SQL?

我们知道,Spark有很多子框架,现在除了基于Spark Core编程之外,用得最多的就是SparkSQL。Spark SQL由于涉及了太多的SQL语法细节的解析或者说优化,其实这些解析或优化,对于我们集 中精力去研究Spark而言,它是一件重要的事情,但其实不是最重要的一件事情。由于它有太多的SQL语法解析,这个不是一个合适的子框架来让我们研究。

3)为什么不选Spark R?

Spark R现在很不成熟,而且支持功能有限,这个也从我们的候选列表中删除掉。

4)为什么不选Spark GraphX(图计算)?

如果大家关注了Spark的演进或发展的话,Spark最近发布的几个版本,Spark图计算基本没有改进。如果按照这个趋势的话,Spark官方机构似乎 在透露一个信号,图计算已经发展到尽头了。所以说,我们如果要研究的话,肯定不会去做一个看上去发展到尽头的东西。另外,至于图计算而言,它有很多数学级 别的算法,而我们是要把Spark做到极致,这样的话,数学这件事情很重要,但对我们来说却不是最重要的。

5)为什么不选Spark MLlib(机器学习)?

Spark机器学习在封装了Vector(向量)和Metrics基础之上,加上Spark的RDD,构建了它的众多的库。这个也由于涉及到了太多的数学的知识,所以我们选机器学习其实也不是一个太好的选择。

综上所述,我们筛选之下,Spark Streaming是我们唯一的选择。

我 们回顾过去,2015年是Spark最火的一年,最火的国家主要是美国。其实,2015年也是流式处理最火的一年。从从业人员的待遇上看,不论2015年 还是2016年,在搞大数据开发的公司中,以Spark岗位招聘的待遇一定是最高的。2016上半年,据StackOverflow开展的一项调查结果显 示,在大数据领域,Spark从业人员的待遇是最高的。在调查中,50%以上的人认为,Spark中最吸引人的是Spark Streaming。总之,大家考虑用Spark,主要是因为Spark Streaming。

Spark Streaming到底有什么魔力?

1)它是流式计算

这是一个流处理的时代,一切数据如果不是流式的处理或者跟流式的处理不相关的话,都是无效的数据。这句话会不断地被社会的发展所证实。

2)流式处理才是真正的我们对大数据的初步印象

一方面,数据流进来,立即给我们一个反馈,这不是批处理或者数据挖掘能做到的。另一方面,Spark非常强大的地方在于它的流式处理可以在线的利用机器学习、图计算、Spark SQL或者Spark R的成果,这得益于Spark多元化、一体化的基础架构设计。也就是说,在Spark技术堆栈中,Spark Streaming可以调用任何的API接口,不需要做任何的设置。这是Spark无可匹敌之处,也是Spark Streaming必将一统天下的根源。这个时代的流处理单打独斗已经不行了,Spark Streaming必然会跟多个Spark子框架联合起来,称霸大数据领域。

3)流式处理“魅力和复杂”的双重体

如果你精通SparkStreaming,你就知道Spark Streaming以及它背后的兄弟框架,展示了Spark和大数据的无穷魅力。不过,在Spark的所有程序中,肯定是基于SparkStreaming的应用程序最容易出问题。为什么?因为数据不断流进来,它要动态控制数据的流入,作业的切分还有数据的处理。这些都会带来极大的复杂性。

4)与其他Spark子框架的巨大区别

如果你仔细观察,你会发现,Spark Streaming很像是基于Spark Core之上的一个应用程序。不像其他子框架,比如机器学习是把数学算法直接应用在Spark的RDD之上,Spark Streaming更像一般的应用程序那样,感知流进来的数据并进行相应的处理。

所以如果要做Spark的定制开发,Spark Streaming则提供了最好的参考,掌握了Spark Streaming也就容易开发任意其他的程序。当然想掌握SparkStreaming,但不去精通Spark Core的话,那是不可能的。Spark Core加Spark Streaming更是双剑合璧,威力无穷。我们选择SparkStreaming来入手,等于是找到了关键点。如果对照风水学的说法,对于Spark,我们算是已经幸运地找到了龙脉。如果要寻龙点穴,那么Spark Streaming就是龙穴之所在。找到了穴位,我们就能一日千里。

2 Spark Streaming另类在线实验

我们在研究Spark Streaming的过程中,会有困惑的事情:如何清晰的看到数据的流入、被处理的过程?
使用一个小技巧,通过调节放大Batch Interval的方式,来降低批处理次数,以方便看清楚各个环节。
我们从已写过的广告点击的在线黑名单过滤的Spark Streaming应用程序入手。

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}

object OnlineBlackListFilter {
def main(args: Array[String]) {
/** * 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息。 * 例如说通过setMaster来设置程序要链接的Spark集群的Master的URL,如果设置 * 为local,则代表Spark程序在本地运行,特别适合于机器配置条件非常差(例如 * 只有1G的内存)的初学者 */val conf = new SparkConf() //创建SparkConf对象
conf.setAppName("OnlineBlackListFilter") //设置应用程序的名称,在程序运行的监控界面可以看到名称
conf.setMaster("spark://Master:7077") //此时,程序在Spark集群 val ssc = new StreamingContext(conf,Seconds(300)) /** * 黑名单数据准备,实际上黑名单一般都是动态的,例如在Redis或者数据库中,黑名单的生成往往有复杂的业务 * 逻辑,具体情况算法不同,但是在Spark Streaming进行处理的时候每次都能工访问完整的信息 */ val blackList = Array(("hadoop",true),("mahout",true))
val blackListRDD = ssc.sparkContext.parallelize(blackList,8) //监听主机Master上的9999端口,接收数据val adsClickStream = ssc.socketTextStream("Master" ,9999)
/** * 此处模拟的广告点击的每条数据的格式为:time、name * 此处map操作的结果是name、(time,name)的格式 */ val adsClientStreamFormated = adsClickStream.map(ads=>(ads.split(" ")(1),ads))
adsClientStreamFormated.transform(userClickRDD => {
//通过leftOuterJoin操作既保留了左侧用户广告点击内容的RDD的所有内容,又获得了相应点击内容是否在黑名单中val joinedBlackListRDD = userClickRDD.leftOuterJoin(blackListRDD)
/** * 进行filter过滤的时候,其输入元素是一个Tuple:(name,((time,name), boolean)) * 其中第一个元素是黑名单的名称,第二元素的第二个元素是进行leftOuterJoin的时候是否存在在值 * 如果存在的话,表面当前广告点击是黑名单,需要过滤掉,否则的话则是有效点击内容; */val validClicked = joinedBlackListRDD.filter(joinedItem=>{
if(joinedItem._2._2.getOrElse(false)){
false
}else{
true
}
})
validClicked.map(validClick => {validClick._2._1})
}).print()
/** * 计算后的有效数据一般都会写入Kafka中,下游的计费系统会从kafka中pull到有效数据进行计费 */
ssc.start()
ssc.awaitTermination()
}
}

  


把程序的Batch Interval设置从30秒改成300秒:

val ssc = new StreamingContext(conf, Seconds(300))
重新生成一下jar包 。
 
Spark集群有5台机器:Master、Worker1、Worker2、Worker3、Worker4。
启动HDFS集群:start-dfs.sh
启动Spark集群:start-all.sh
启动Spark的History Server:start-history-server.sh
打开数据发送的端口:nc -lk 9999。
用spark-submit运行前面生成的jar包。
/usr/local/spark/spark-1.6.0-bin-hadoop2.6/bin/spark-submit --class com.dt.spark.sparkstreaming.OnlineBlackListFilter --master spark://Master:7077 /root/Documents/SparkApps/OnlineBlackListFilter.jar

在数据发送端口输入若干数据,比如:
 
1375864674543 Tom
1375864674553 Spy
1375864674571 Andy
1375864688436 Cheater
1375864784240 Kelvin
1375864853892 Steven
1375864979347 John
 
 
打开浏览器,看History Server的日志信息:

点击最新的应用,看我们目前运行的应用程序中有些什么Job:

总共竟然有5个Job。这完全不是我们此前做Spark SQL之类的应用程序时看到的样子。

我们接下来看一看这些Job的内容,主要揭示一些现象,不会做完全深入的剖析,只是为了先让大家进行一些思考。
 
Job 0:此Job不体现我们的业务逻辑代码。这个Job是出于对后面计算的负载均衡的考虑。

Job 0包含有Stage 0、Stage 1。随便看一个Stage,比如Stage 1。看看其中的Aggregated Metrics by Executor部分:

发现此Stage在所有Executor上都存在。

 
Job 1:运行时间比较长,耗时1.5分钟。

点击Stage 2的链接,进去看看Aggregated Metrics By Executor部分:

可以知道,Stage 2只在Worker4上的一个Executor执行,而且执行了1.5分钟。

是否会觉得奇怪:从业务处理的角度看,我们发送的那么一点数据,没有必要去启动一个运行1.5分钟的任务吧。那这个任务是做什么呢?
从DAG Visualization部分,就知道此Job实际就是启动了一个接收数据的Receiver:


原来Receiver是通过一个Job来启动的。那肯定有一个Action来触发它。

看看Tasks部分:

只有一个Worker运行此Job。是用于接收数据。

Locality Level是PROCESS_LOCAL,原来是内存节点。所以,默认情况下,数据接收不会使用磁盘,而是直接使用内存中的数据。
看来,Spark Streaming应用程序启动后,自己会启动一些Job。默认启动了一个Job来接收数据,为后续处理做准备。
重要启示:一个Spark应用程序中可以启动很多Job,而这些不同的Job之间可以相互配合。这一认识为我们写复杂Spark程序奠定了良好的基础。
 
Job 2:看Details可以发现有我们程序的主要业务逻辑,体现在Stag 3、Stag4、Stag 5中。


我们看Stag3、Stage4的详情,可以知道这2个Stage都是用4个Executor执行的。所有数据处理是在4台机器上进行的。

Stag 5只在Worker4上。这是因为这个Stage有Shuffle操作。

Job3:有Stage 6、Stage 7、Stage 8。其中Stage 6、Stage 7被跳过。

看看Stage 8的Aggregated Metrics by Executor部分。可以看到,数据处理是在4台机器上进行的:

Job4:也体现了我们应用程序中的业务逻辑 。有Stage 9、Stage 10、Stage 11。其中Stage 9、Stage 10被跳过。

看看Stage 11的详情。可以看到,数据处理是在Worker2之外的其它3台机器上进行的:

综合以上的现象可以知道,Spark Streaming的一个应用中,运行了这么多Job,远不是我们从网络博客或者书籍上看的那么简单。

我们有必要通过这些现象,反过来回溯去寻根问源。不过这次暂不做深入分析。
我们的神奇之旅才刚刚开始。

3 瞬间理解Spark Streaming本质

我们先看一张图:

以上的连续4个图,分别对应以下4个段落的描述:

Spark Streaming接收Kafka、Flume、HDFS和Kinesis等各种来源的实时输入数据,进行处理后,处理结果保存在HDFS、Databases等各种地方。
Spark Streaming接收这些实时输入数据流,会将它们按批次划分,然后交给Spark引擎处理,生成按照批次划分的结果流。
Spark Streaming提供了表示连续数据流的、高度抽象的被称为离散流的DStream。DStream本质上表示RDD的序列。任何对DStream的操作都会转变为对底层RDD的操作。
Spark Streaming使用数据源产生的数据流创建DStream,也可以在已有的DStream上使用一些操作来创建新的DStream。
 
在我们前面的实验中,每300秒会接收一批数据,基于这批数据会生成RDD,进而触发Job,执行处理。
 
DStream是一个没有边界的集合,没有大小的限制。
DStream代表了时空的概念。随着时间的推移,里面不断产生RDD。
锁定到时间片后,就是空间的操作,也就是对本时间片的对应批次的数据的处理。
 
下面用实例来讲解数据处理过程。
从Spark Streaming程序转换为Spark执行的作业的过程中,使用了DStreamGraph。
Spark Streaming程序中一般会有若干个对DStream的操作。DStreamGraph就是由这些操作的依赖关系构成。
从程序到DStreamGraph的转换,如以下图例所示:

本例中,从每个foreach开始,都会进行回溯。从后往前回溯这些操作之间的依赖关系,也就形成了DStreamGraph。

执行从DStream到RDD的转换,也就形成了RDD Graph,如下图所示:


空间维度确定之后,随着时间不断推进,会不断实例化RDD Graph,然后触发Job去执行处理。

现在再去读官方的Spark Streaming的文档,就好理解多了。

看来我们的学习,将从Spark Streaming的现象开始,深入到Spark Core和Spark Streaming的本质。

 
备注:
本博客内容来源于Spark发行版本定制课程
 

1.Spark Streaming另类实验与 Spark Streaming本质解析的更多相关文章

  1. 通过案例对 spark streaming 透彻理解三板斧之一: spark streaming 另类实验

    本期内容 : spark streaming另类在线实验 瞬间理解spark streaming本质 一.  我们最开始将从Spark Streaming入手 为何从Spark Streaming切入 ...

  2. 【原创 Hadoop&Spark 动手实践 11】Spark Streaming 应用与动手实践

    [原创 Hadoop&Spark 动手实践 11]Spark Streaming 应用与动手实践 目标: 1. 掌握Spark Streaming的基本原理 2. 完成Spark Stream ...

  3. Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...

  4. Spark入门实战系列--7.Spark Streaming(下)--实时流计算Spark Streaming实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .实例演示 1.1 流数据模拟器 1.1.1 流数据说明 在实例演示中模拟实际情况,需要源源 ...

  5. Spark Streaming、HDFS结合Spark JDBC External DataSouces处理案例

    场景:使用Spark Streaming接收HDFS上的文件数据与关系型数据库中的表进行相关的查询操作: 使用技术:Spark Streaming + Spark JDBC External Data ...

  6. Spark踩坑记:Spark Streaming+kafka应用及调优

    前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从k ...

  7. Spark 系列(十三)—— Spark Streaming 与流处理

    一.流处理 1.1 静态数据处理 在流处理之前,数据通常存储在数据库,文件系统或其他形式的存储系统中.应用程序根据需要查询数据或计算数据.这就是传统的静态数据处理架构.Hadoop 采用 HDFS 进 ...

  8. 实验5 Spark SQL编程初级实践

    今天做实验[Spark SQL 编程初级实践],虽然网上有答案,但都是用scala语言写的,于是我用java语言重写实现一下. 1 .Spark SQL 基本操作将下列 JSON 格式数据复制到 Li ...

  9. 实验 5 Spark SQL 编程初级实践

    实验 5  Spark SQL 编程初级实践    参考厦门大学林子雨 1. Spark SQL 基本操作 将下列 json 数据复制到你的 ubuntu 系统/usr/local/spark 下,并 ...

随机推荐

  1. bzoj 1142 [POI2009]Tab 最小表示

    [POI2009]Tab Time Limit: 40 Sec  Memory Limit: 162 MBSubmit: 373  Solved: 167[Submit][Status][Discus ...

  2. HDU 2686 / NYOJ 61 DP

    传纸条(一) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5   描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行 ...

  3. cin.get()、流和缓冲区

    大家好,这是我在CSDN的第一篇博客.我是一名学习GIS专业的大学生.我从小开始喜欢编程,可是到现在编程水平却长进不大,依然是菜鸟一个.究其原因,虽然这些年乱七八糟的东西学过不少,但是总的来说还是基础 ...

  4. [C#] 类型学习笔记一:CLR中的类型,装箱和拆箱

    在学习.NET的时候,因为一些疑问,让我打算把.NET的类型篇做一个总结.总结以三篇博文的形式呈现. 这篇博文,作为三篇博文的第一篇,主要探讨了.NET Framework中的基本类型,以及这些类型一 ...

  5. [Luogu 2341] HAOI2006 受欢迎的牛

    [Luogu 2341] HAOI2006 受欢迎的牛 智能推的水题,一看是省选题就给做了,做一半才发现 Tarjan 算法忘干净了. Tarjan 求出SCC,算出每一个 SCC 包含原图的点数(s ...

  6. mysql binlog日志手动清除

    purge binary logs to 'mysql-bin.000050'; set global expire_logs_days=7; flush logs;

  7. nginx 安装 lua-nginx-module

    nginx增加lua模块 yum install -y gcc g++ gcc-c++ zlib zlib-devel openssl openssl-devel pcre pcre-devel wg ...

  8. Mybatis中select传递多个参数

    一.单个参数: public List<XXBean> getXXBeanList(String xxCode); <select id="getXXXBeanList&q ...

  9. 解决win10 CPU占用高的问题

    [PConline 技巧]很多笔记本用户在升级到Win10后,都遇到了这样一个问题,那就是Win10的CPU占用明显高于Win7.这个问题对于台式机可能还算不了什么,顶多就是偶尔卡一下罢了.可由于笔记 ...

  10. Jenkins有用的插件

    1. Multijob plugin: 多个任务同时运行 2. ssh slave plugin: 用于安装slave? Allows to launch over ssh, using a java ...