[HNOI2008]玩具装箱(Link

题目描述
\(P\)教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。\(P\)教授有编号为\(1...N\)的\(N\)件玩具,第\(i\)件玩具经过压缩后变成一维长度为\(C[i]\).为了方便整理,\(P\)教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为\(x=j-i+\sum_{k=j}^{k<=j}C[k]\) 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为\(x\),其制作费用为\((X-L)^2\).其中\(L\)是一个常量。\(P\)教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过\(L\)。但他希望费用最小.
输入输出格式
输入格式:
第一行输入两个整数\(N\),\(L\).接下来\(N\)行输入\(C[i]\).\(1<=N<=50000\),\(1<=L,Ci<=10^7\)
输出格式:
输出最小费用

简单来说,我们有一个长度为\(L\)的序列\(C[i]\),要求将序列分成若干段,每一段如果从\(i\)到\(j\),整段的和为\(S\),那么就会产生\((j-i+S-L)^2\)的代价,要求得到最小的代价和。
那么\(S\)就是\(\sum_{k=i}^{k<=j}C[k]\),那么我们就可以把式子简化成这样:\(\sum_{k=i}^{k<=j}(C[k]+1)-(L+1)\),所以你可以发现如果将输入的所有\(C[i]\)加上\(i\)并且将\(L\)全部加上\(1\)的话,费用就变成了\((S-L)^2\)。
设\(sum[i]\)为\(i\)点的前缀和,我们得到\(DP\)式子为\(f[i]=min_{j=0}^{j<=i}(f[j]+(sum[i]-sum[j]-L+i-j-1)^2)\)
嗯,按照上面的节奏,我们将\(j\)范围内的式子变一下:\(f[i]=min_{j=0}^{j<=i}(f[j]+((sum[i]+i)-(sum[j]+j)-L)^2)\)
然后我们令\(s[i]=sum[i]+i\),式子就变成了这样:\(f[i]=min_{j=0}^{j<=i}(f[j]+(s[i]-s[j]-L)^2)\)
然后把里面的平方展开\(f[i]=min_{j=0}^{j<=i}(f[j]+s[i]^2+(s[j]+L)^2-2*s[i]*(s[j]+L))\)
然后稍微一个移项\(f[i]+2*s[i]*min_{j=0}^{j<=i}(s[j]+L)=f[j]+s[i]^2+(s[j]+L)^2\)
然后我们看这个式子的格式就很熟悉了

b+kx=y

对!就是前面搞的直线的解析式!所以我们知道这么一个转化

\(x=s[j]+L\)

\(y=f[j]+s[i]^2+(s[j]+L)^2\)

并且我们还知道\(dp[i]\)就是上面的\(y=kx+b\)的截距。那么我们将所有的\((x=s[j]+L,f[j]+s[i]^2+(s[j]+L)^2)\)点全部加到平面直角坐标系上,然后维护下凸壳就可以啦!并且你可以发现斜率\(k=2*s[i]\)是一个单调递增的哦~
并且这里还有一个很重要的地方:大家看上面的那个\(y\)的方程是\(y=f[j]+s[i]^2+(s[j]+L)^2\)而实际上这里并不是一个关于\(i,j\)的双变量,我们
至于凸壳的寻找方法和最优点的寻找方法上面已经有比较详细的介绍了,就不再多说,上代码讲解就好了吧。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define MAXN 100010
#define INF 0x7fffffff
#define ll long long
using namespace std;
ll n,L,s[MAXN],f[MAXN];
ll q[MAXN],head,tail;
inline void read(ll &x){
    char c=getchar(); x=0;
    while(c<'0'||c>'9') c=getchar();
    while(c<='9'&&c>='0') x=x*10+c-48,c=getchar();
}
inline void print(ll x){
    ll num=0; char c[15];
    while(x) c[++num]=(x%10)+48,x/=10;
    while(num) putchar(c[num--]);
    putchar('\n');
}
inline double x(ll j){
    return s[j];
}
inline double y(ll i){
    return f[i]+(s[i]+L-1)*(s[i]+L-1);
}
inline double slope(ll i,ll j){
    return (y(j)-y(i))/(x(j)-x(i));
}
int main(){
    read(n); read(L);
    L++; head=1; tail=1;
    for(int i=1;i<=n;i++){
        ll x;  read(x);
        s[i]=s[i-1]+x;
        s[i]+=i;
    }
    for(int i=1;i<=n;i++){
        while(head<tail&&slope(q[head],q[head+1])<2*s[i])
        head++;  ll j=q[head];
        f[i]=f[j]+(s[i]-s[j]-L)*(s[i]-s[j]-L);
        while(head<tail&&slope(q[tail-1],q[tail])>slope(q[tail],i))
            tail--;
        q[++tail]=i;
    }
    print(f[n]);
    return 0;
}

[LuoguP3195] [HNOI2008]玩具装箱TOY的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. 【bzoj1010】[HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9281  Solved: 3719[Submit][St ...

  4. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  5. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  6. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

  7. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  8. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  9. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

随机推荐

  1. 关于request请求的基本获取

      1.Request对象的作用是与客户端交互,收集客户端的Form.Cookies.超链接,或者收集服务器端的环境变量. request对象是从客户端向服务器发出请求,包括用户提交的信息以及客户端的 ...

  2. Java 异常的处理方式--throws和try catch

    异常的第一种处理方式throws. 看以下例子: import java.io.*;public class ExceptionTest04{ public static void main(Stri ...

  3. 读EntityFramework.DynamicFilters源码_心得_设计思想_04

    前几次,我们从说明文档,示例,单元测试了解了怎么用这个动态过滤器,那么如果仅仅是为了实现目的,知道怎么用就可以完成相应的功能开发,但我还想了解的问题是 作者是怎么将动态过滤器与EF结合的 有哪些设计思 ...

  4. maven(5)--依赖特性

    依赖的子标签中有scope,常用值有compile.provide.test.runtime compile:编译范围有效,即编译和打包时都会将这个依赖存储 provide:编译测试有效,但是打包是将 ...

  5. 记录开发Nodejs c++ addon的一些经验(三、关于node-gyp)

    关于node-gyp如何进行编译,我想它的官网已经说的很详细了: https://github.com/nodejs/node-gyp 但是我感觉关于binding.gyp文件的语法规则还是说的不明确 ...

  6. 关于开发Cesium造成的电脑风扇狂飙的问题

    最近在开发Cesium的项目,每次一打开浏览器渲染3D 模型.风扇就狂飙起来,进任务管理器查看发现集显使用率100%,独显使用率0%.使用的是集显进行渲染.怪不得风扇会飙起来.既然知道问题所在,解决的 ...

  7. sass语法一(变量篇)

    文件后缀名 sass有两种后缀名的文件:一种后缀名为sass,不使用大括号和分号:另一种是我们这里使用的scss文件,这种和我们平时使用的css文件格式差不多,使用大括号和分号. //后缀名为sass ...

  8. python小练习2

    结果 代码 鞋子价格=0 男孩价格=0 爆米花价格=0 计算完毕=0 for 鞋子动态价格 in range(0,20): if (计算完毕==1): break; #print("鞋子动态 ...

  9. C# 导出excel文件处理科学计数法办法

    在邦定gridview控件时在rowdatabound事件中队数据格式化 protected void DataGridView1_RowDataBound(object sender, GridVi ...

  10. Myeclipes连接Mysql数据库配置

    相信大家在网站上也找到了许多关于myeclipes如何连接mysql数据库的解决方案,虽然每一步都按照他的步骤来,可到最后还是提示连接失败,有的方案可能应个人设备而异,配置环境不同导致.经过个人多方探 ...