题目链接:http://poj.org/problem?id=2914

思路:算法基于这样一个定理:对于任意s, t   V ∈ ,全局最小割或者等于原图的s-t 最小割,或者等于将原图进行 Contract(s, t)操作所得的图的全局最小割。 算法框架:

1. 设当前找到的最小割MinCut 为+∞ 。
2. 在 G中求出任意 s-t 最小割 c,MinCut = min(MinCut, c)   。
3. 对 G作 Contract(s, t)操作,得到 G'=(V', E'),若|V'| > 1,则G=G'并转 2,否则MinCut 为原图的全局最小割。

Contract 操作定义: 
若不存在边(p, q),则定义边(p, q)权值w(p, q) = 0 
Contract(a, b): 删掉点 a, b 及边(a, b),加入新节点 c,对于任意 v V ∈ ,w(v, c) = w(c, v) = w(a, v) + w(b, v).

求 G=(V, E)中任意 s-t 最小割的算法: 
定义w(A, x) = ∑w(v[i], x),v[i] ∈ A  
定义 Ax 为在x 前加入 A 的所有点的集合(不包括 x) 
1. 令集合 A={a},a为 V中任意点 
2. 选取 V - A中的 w(A, x)最大的点 x加入集合 A 
3. 若|A|=|V|,结束

令倒数第二个加入 A的点为 s,最后一个加入 A的点为 t,则s-t 最小割为 w(At, t)。

贴下大牛的模版:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 555
#define inf 1<<30 int v[MAXN],dist[MAXN];
int map[MAXN][MAXN];
bool vis[MAXN];
int n,m; //求全局最小割的Stoer_Wanger算法
int Stoer_Wanger(int n)
{
int res=inf;
for(int i=;i<n;i++)v[i]=i;
while(n>){
int k=,pre=;//pre用来表示之前加入A集合的点,我们每次都以0点为第一个加入A集合的点
memset(vis,false,sizeof(vis));
memset(dist,,sizeof(dist));
for(int i=;i<n;i++){
k=-;
for(int j=;j<n;j++){
if(!vis[v[j]]){
dist[v[j]]+=map[v[pre]][v[j]];//dis数组用来表示该点与A集合中所有点之间的边的长度之和
if(k==-||dist[v[k]]<dist[v[j]]){
k=j;
}
}
}
vis[v[k]]=true;
if(i==n-){
res=min(res,dist[v[k]]);
//将该点合并到pre上,相应的边权就要合并
for(int j=;j<n;j++){
map[v[pre]][v[j]]+=map[v[j]][v[k]];
map[v[j]][v[pre]]+=map[v[j]][v[k]];
}
v[k]=v[--n];//删除最后一个点
}
pre=k;
}
}
return res;
} int main()
{
int u,v,w;
while(~scanf("%d%d",&n,&m)){
memset(map,,sizeof(map));
while(m--){
scanf("%d%d%d",&u,&v,&w);
map[u][v]+=w;
map[v][u]+=w;
}
int ans=Stoer_Wanger(n);
printf("%d\n",ans);
}
return ;
}

poj 2914(stoer_wanger算法求全局最小割)的更多相关文章

  1. POJ 2914 Minimum Cut (全局最小割)

    [题目链接] http://poj.org/problem?id=2914 [题目大意] 求出一个最小边割集,使得图不连通 [题解] 利用stoerwagner算法直接求出全局最小割,即答案. [代码 ...

  2. SW算法求全局最小割(Stoer-Wagner算法)

    我找到的唯一能看懂的题解:[ZZ]最小割集Stoer-Wagner算法 似乎是一个冷门算法,连oi-wiki上都没有,不过洛谷上竟然有它的模板题,并且2017百度之星的资格赛还考到了.于是来学习一下. ...

  3. 求全局最小割(SW算法)

    hdu3002 King of Destruction Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  4. 图的全局最小割的Stoer-Wagner算法及例题

    Stoer-Wagner算法基本思想:如果能求出图中某两个顶点之间的最小割,更新答案后合并这两个顶点继续求最小割,到最后就得到答案. 算法步骤: --------------------------- ...

  5. HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)

    Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族. 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士. 所以这一场战争,将会十分艰难. 为了更 ...

  6. UVALive 5099 Nubulsa Expo 全局最小割问题

    B - Nubulsa Expo Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit S ...

  7. poj2914 Minimum Cut 全局最小割模板题

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 8324   Accepted: 3488 Case ...

  8. HDU 6081 度度熊的王国战略(全局最小割堆优化)

    Problem Description度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族.哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士.所以这一场战争,将会十分艰难.为了更好的进攻 ...

  9. HDU 3691 Nubulsa Expo(全局最小割)

    Problem DescriptionYou may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa i ...

随机推荐

  1. mui 页面传值

    点击第一个页面的标签,跳转到第二个页面,把第一个页面的值也传往目标页面 现在提供两种实现方式 注意:需要在手机运行才可以,用电脑浏览器可能不支持. 第一种方式  页面已创建,通过自定义事件传值 fir ...

  2. View设置宽高

    public class ViewMeasuare extends View { public ViewMeasuare(Context context, AttributeSet attrs) { ...

  3. #pragma pack(push,1)与#pragma pack(1)的区别(转)

    这是给编译器用的参数设置,有关结构体字节对齐方式设置, #pragma pack是指定数据在内存中的对齐方式. #pragma pack (n)             作用:C编译器将按照n个字节对 ...

  4. Unity 开发游戏编写代码的技巧

    在平时开发游戏过程中,遇到一些编写代码很繁琐的问题. 我发现我团队中每个人都会遇到,就算打写出来分享下经验. 条件断点 利用IDE提供的工具, 右键断点的时候 输入条件, 当条件达成的时候,断点才能命 ...

  5. 【LeetCode】- Search Insert Position(查找插入的位置)

    [ 问题: ] Given a sorted array and a target value, return the index if the target is found. If not, re ...

  6. VSCode集成Git代码管理

    一.安装和配置VSCode与Git 1.下载Git并安装: https://git-scm.com/download/ 2.下载VSCode并进行安装: https://code.visualstud ...

  7. Rabbitmq消息队列(三) 工作队列

    1.简介 默认来说,RabbitMQ会按顺序得把消息发送给每个消费者(consumer).平均每个消费者都会收到同等数量得消息.这种发送消息得方式叫做——轮询(round-robin). 工作队列(又 ...

  8. Freeswitch中文用户手册(第四章 SIP)----2

    通过 B2BUA 呼叫 在真实世界中,bob 和 alice 肯定要经常改变位置,那么它们的 SIP 地址也会相应改变,并且,如果他们之中有一个或两个处于 NAT 的网络中时,直接通信就更困难了.所以 ...

  9. 最全面的 Sublime Text 使用指南

    最全面的 Sublime Text 使用指南   摘要(Abstract) 本文系统全面的介绍了Sublime Text,旨在成为最优秀的Sublime Text中文教程. 前言(Prologue) ...

  10. DB2字符处理函数

    转自:http://www.blogjava.net/bingle/archive/2007/07/11/129681.html ----------------------------------- ...