题目链接:http://poj.org/problem?id=2914

思路:算法基于这样一个定理:对于任意s, t   V ∈ ,全局最小割或者等于原图的s-t 最小割,或者等于将原图进行 Contract(s, t)操作所得的图的全局最小割。 算法框架:

1. 设当前找到的最小割MinCut 为+∞ 。
2. 在 G中求出任意 s-t 最小割 c,MinCut = min(MinCut, c)   。
3. 对 G作 Contract(s, t)操作,得到 G'=(V', E'),若|V'| > 1,则G=G'并转 2,否则MinCut 为原图的全局最小割。

Contract 操作定义: 
若不存在边(p, q),则定义边(p, q)权值w(p, q) = 0 
Contract(a, b): 删掉点 a, b 及边(a, b),加入新节点 c,对于任意 v V ∈ ,w(v, c) = w(c, v) = w(a, v) + w(b, v).

求 G=(V, E)中任意 s-t 最小割的算法: 
定义w(A, x) = ∑w(v[i], x),v[i] ∈ A  
定义 Ax 为在x 前加入 A 的所有点的集合(不包括 x) 
1. 令集合 A={a},a为 V中任意点 
2. 选取 V - A中的 w(A, x)最大的点 x加入集合 A 
3. 若|A|=|V|,结束

令倒数第二个加入 A的点为 s,最后一个加入 A的点为 t,则s-t 最小割为 w(At, t)。

贴下大牛的模版:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 555
#define inf 1<<30 int v[MAXN],dist[MAXN];
int map[MAXN][MAXN];
bool vis[MAXN];
int n,m; //求全局最小割的Stoer_Wanger算法
int Stoer_Wanger(int n)
{
int res=inf;
for(int i=;i<n;i++)v[i]=i;
while(n>){
int k=,pre=;//pre用来表示之前加入A集合的点,我们每次都以0点为第一个加入A集合的点
memset(vis,false,sizeof(vis));
memset(dist,,sizeof(dist));
for(int i=;i<n;i++){
k=-;
for(int j=;j<n;j++){
if(!vis[v[j]]){
dist[v[j]]+=map[v[pre]][v[j]];//dis数组用来表示该点与A集合中所有点之间的边的长度之和
if(k==-||dist[v[k]]<dist[v[j]]){
k=j;
}
}
}
vis[v[k]]=true;
if(i==n-){
res=min(res,dist[v[k]]);
//将该点合并到pre上,相应的边权就要合并
for(int j=;j<n;j++){
map[v[pre]][v[j]]+=map[v[j]][v[k]];
map[v[j]][v[pre]]+=map[v[j]][v[k]];
}
v[k]=v[--n];//删除最后一个点
}
pre=k;
}
}
return res;
} int main()
{
int u,v,w;
while(~scanf("%d%d",&n,&m)){
memset(map,,sizeof(map));
while(m--){
scanf("%d%d%d",&u,&v,&w);
map[u][v]+=w;
map[v][u]+=w;
}
int ans=Stoer_Wanger(n);
printf("%d\n",ans);
}
return ;
}

poj 2914(stoer_wanger算法求全局最小割)的更多相关文章

  1. POJ 2914 Minimum Cut (全局最小割)

    [题目链接] http://poj.org/problem?id=2914 [题目大意] 求出一个最小边割集,使得图不连通 [题解] 利用stoerwagner算法直接求出全局最小割,即答案. [代码 ...

  2. SW算法求全局最小割(Stoer-Wagner算法)

    我找到的唯一能看懂的题解:[ZZ]最小割集Stoer-Wagner算法 似乎是一个冷门算法,连oi-wiki上都没有,不过洛谷上竟然有它的模板题,并且2017百度之星的资格赛还考到了.于是来学习一下. ...

  3. 求全局最小割(SW算法)

    hdu3002 King of Destruction Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  4. 图的全局最小割的Stoer-Wagner算法及例题

    Stoer-Wagner算法基本思想:如果能求出图中某两个顶点之间的最小割,更新答案后合并这两个顶点继续求最小割,到最后就得到答案. 算法步骤: --------------------------- ...

  5. HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)

    Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族. 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士. 所以这一场战争,将会十分艰难. 为了更 ...

  6. UVALive 5099 Nubulsa Expo 全局最小割问题

    B - Nubulsa Expo Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit S ...

  7. poj2914 Minimum Cut 全局最小割模板题

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 8324   Accepted: 3488 Case ...

  8. HDU 6081 度度熊的王国战略(全局最小割堆优化)

    Problem Description度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族.哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士.所以这一场战争,将会十分艰难.为了更好的进攻 ...

  9. HDU 3691 Nubulsa Expo(全局最小割)

    Problem DescriptionYou may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa i ...

随机推荐

  1. 修改tcp数据内容

    http://blog.sina.com.cn/s/blog_6f0c85fb0100xi1x.html 2.6内核基于NetFilter处理框架修改TCP数据包实现访问控制 参考上面的钩子函数,结合 ...

  2. static、final修饰符、内部类

    static修饰符: static修饰符能够与属性.方法和内部类一起使用,表示静态的.类中的静态变量和静态方法能够与类名一起使用.不须要创建一个类的对象来訪问该类的静态成员. class Static ...

  3. 关于spring中<context:component-scan base-package="" />写法

    1.通配符形式<context:component-scan base-package="com.*" /> 2.全路径 <context:component-s ...

  4. Linux命令-网络命令:lastlog

    last 显示所有用户最后登录信息(会显示系统用户) last -u 只看某一个用户wangyunpeng的最后登录信息 last -u 查看系统用户root的最后登录信息 root用户的ID是0.从 ...

  5. Vue基础及脚手架环境搭建

    From:http://www.jianshu.com/p/dc5057e7ad0d 一.vue基础 “Vue2.0”跟俺一起全面入坑 01 “Vue2.0”跟俺一起全面入坑 02 “Vue2.0”跟 ...

  6. Vmware虚拟机三种网络模式详解(转)

    原文来自http://note.youdao.com/share/web/file.html?id=236896997b6ffbaa8e0d92eacd13abbf&type=note 我怕链 ...

  7. Laravel 5 教程 - 文件上传

    一.简介 Laravel 有很棒的文件系统抽象层,是基于 Frank de Jonge 的 Flysystem 扩展包. Laravel 集成的 Flysystem 提供了简单的接口,可以操作本地端空 ...

  8. mysql数据库中不能插入0000-00-00 00:00:00日期数据(报错Invalid datetime format: 1292 Incorrect datetime value: '0000-00-00 00:00:00')

    报错信息 SQLSTATE[22007]: Invalid datetime format: 1292 Incorrect datetime value: '0000-00-00 00:00:00' ...

  9. log4cxx在linux下的编译使用

    最近在linux下使用log4cxx库,按照其官方文档提供的方法来进行编译,不能成功,又利用google搜索了好几个中文博客上讲述在linux下编译使用log4cxx库的方法,依然不能成功,在这里我奉 ...

  10. HR问“预期薪资是多少”,这么说能加薪zz

    每年过完节,收好上一年的年终奖,身边人就开始蠢蠢欲动,招聘市场也异常火爆,节前各种裁员的新闻,过了个节都变成了“我们还要继续招人”. 年景不好,人才更是成了紧俏货.可现实中,我却发现,优质的人才未必能 ...