题目链接:http://poj.org/problem?id=2914

思路:算法基于这样一个定理:对于任意s, t   V ∈ ,全局最小割或者等于原图的s-t 最小割,或者等于将原图进行 Contract(s, t)操作所得的图的全局最小割。 算法框架:

1. 设当前找到的最小割MinCut 为+∞ 。
2. 在 G中求出任意 s-t 最小割 c,MinCut = min(MinCut, c)   。
3. 对 G作 Contract(s, t)操作,得到 G'=(V', E'),若|V'| > 1,则G=G'并转 2,否则MinCut 为原图的全局最小割。

Contract 操作定义: 
若不存在边(p, q),则定义边(p, q)权值w(p, q) = 0 
Contract(a, b): 删掉点 a, b 及边(a, b),加入新节点 c,对于任意 v V ∈ ,w(v, c) = w(c, v) = w(a, v) + w(b, v).

求 G=(V, E)中任意 s-t 最小割的算法: 
定义w(A, x) = ∑w(v[i], x),v[i] ∈ A  
定义 Ax 为在x 前加入 A 的所有点的集合(不包括 x) 
1. 令集合 A={a},a为 V中任意点 
2. 选取 V - A中的 w(A, x)最大的点 x加入集合 A 
3. 若|A|=|V|,结束

令倒数第二个加入 A的点为 s,最后一个加入 A的点为 t,则s-t 最小割为 w(At, t)。

贴下大牛的模版:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 555
#define inf 1<<30 int v[MAXN],dist[MAXN];
int map[MAXN][MAXN];
bool vis[MAXN];
int n,m; //求全局最小割的Stoer_Wanger算法
int Stoer_Wanger(int n)
{
int res=inf;
for(int i=;i<n;i++)v[i]=i;
while(n>){
int k=,pre=;//pre用来表示之前加入A集合的点,我们每次都以0点为第一个加入A集合的点
memset(vis,false,sizeof(vis));
memset(dist,,sizeof(dist));
for(int i=;i<n;i++){
k=-;
for(int j=;j<n;j++){
if(!vis[v[j]]){
dist[v[j]]+=map[v[pre]][v[j]];//dis数组用来表示该点与A集合中所有点之间的边的长度之和
if(k==-||dist[v[k]]<dist[v[j]]){
k=j;
}
}
}
vis[v[k]]=true;
if(i==n-){
res=min(res,dist[v[k]]);
//将该点合并到pre上,相应的边权就要合并
for(int j=;j<n;j++){
map[v[pre]][v[j]]+=map[v[j]][v[k]];
map[v[j]][v[pre]]+=map[v[j]][v[k]];
}
v[k]=v[--n];//删除最后一个点
}
pre=k;
}
}
return res;
} int main()
{
int u,v,w;
while(~scanf("%d%d",&n,&m)){
memset(map,,sizeof(map));
while(m--){
scanf("%d%d%d",&u,&v,&w);
map[u][v]+=w;
map[v][u]+=w;
}
int ans=Stoer_Wanger(n);
printf("%d\n",ans);
}
return ;
}

poj 2914(stoer_wanger算法求全局最小割)的更多相关文章

  1. POJ 2914 Minimum Cut (全局最小割)

    [题目链接] http://poj.org/problem?id=2914 [题目大意] 求出一个最小边割集,使得图不连通 [题解] 利用stoerwagner算法直接求出全局最小割,即答案. [代码 ...

  2. SW算法求全局最小割(Stoer-Wagner算法)

    我找到的唯一能看懂的题解:[ZZ]最小割集Stoer-Wagner算法 似乎是一个冷门算法,连oi-wiki上都没有,不过洛谷上竟然有它的模板题,并且2017百度之星的资格赛还考到了.于是来学习一下. ...

  3. 求全局最小割(SW算法)

    hdu3002 King of Destruction Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  4. 图的全局最小割的Stoer-Wagner算法及例题

    Stoer-Wagner算法基本思想:如果能求出图中某两个顶点之间的最小割,更新答案后合并这两个顶点继续求最小割,到最后就得到答案. 算法步骤: --------------------------- ...

  5. HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)

    Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族. 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士. 所以这一场战争,将会十分艰难. 为了更 ...

  6. UVALive 5099 Nubulsa Expo 全局最小割问题

    B - Nubulsa Expo Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit S ...

  7. poj2914 Minimum Cut 全局最小割模板题

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 8324   Accepted: 3488 Case ...

  8. HDU 6081 度度熊的王国战略(全局最小割堆优化)

    Problem Description度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族.哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士.所以这一场战争,将会十分艰难.为了更好的进攻 ...

  9. HDU 3691 Nubulsa Expo(全局最小割)

    Problem DescriptionYou may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa i ...

随机推荐

  1. HDU 5296 Annoying problem

    Annoying problem Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  2. 运用Unity实现依赖注入[有参构造注入]

    上一篇章讲到关于使用Unity实现依赖注入的简单功能,针对有博友提出关于有参构造注入的问题; 本文同样通过一个实例来讲解如何实现此功能,文中一些分层讲解可以看上一文章(运用Unity实现依赖注入[结合 ...

  3. Lr_debug_message,Lr_output_message,Lr_error_message,Lrd_stmt,Lrd_fetch

    今天在群里,问了 Lr_debug_message,Lr_output_message,Lr_error_message,Lrd_stmt,Lrd_fetch.下 面我整理了下Lr_debug_mes ...

  4. 使用Apache Jmeter进行并发压力测试

    http://blog.jassassin.com/2014/04/17/tools/jmeter/

  5. Entity Framework Code First使用者的福音 --- EF Power Tool使用记之一(转载)

    好像蛮长时间没有新文章带给大家了.前几天出差再加上忙着公司里的活儿,几乎都没时间上博客园了.今天正好有些时间,为大家简单介绍EF产品组新发布的一个牛逼的小工具——EF Power Tool(翻译的话, ...

  6. Yii2基础常用笔记

    表单验证规则写在model类里,例如: 通过表单输入的值给模型属性填充数据用模型对象的load方法. $model->load(Yii::$app->request->post())

  7. OSGI 面向Java的动态模型系统

    OSGI (面向Java的动态模型系统) OSGi(Open Service Gateway Initiative)技术是Java动态化模块化系统的一系列规范.OSGi一方面指维护OSGi规范的OSG ...

  8. python学习之运算表达式优先级

    python中,有变量.值和运算符参与的语句叫做表达式. 比如: #字符串表达式 "hello" #运算表达式 + #赋值表达式 test = "hello" ...

  9. datatables 相关文章

    http://blog.csdn.net/zhu_xiao_yuan/article/details/51252300 datatables参数配置详解  http://blog.csdn.net/j ...

  10. mybatis3 sqlsession

    1.mybatis3中的通过openSession()方法打开的sqlsession,它的事务默认是关闭的,所以进行数据库完成操作之后,要记得commit(),也可以添加openSession(boo ...