Let's play the minesweeper game (Wikipediaonline game)!

You are given a 2D char matrix representing the game board. 'M' represents an unrevealed mine, 'E' represents an unrevealed empty square, 'B' represents a revealed blank square that has no adjacent (above, below, left, right, and all 4 diagonals) mines, digit ('1' to '8') represents how many mines are adjacent to this revealed square, and finally 'X' represents a revealed mine.

Now given the next click position (row and column indices) among all the unrevealed squares ('M' or 'E'), return the board after revealing this position according to the following rules:

  1. If a mine ('M') is revealed, then the game is over - change it to 'X'.
  2. If an empty square ('E') with no adjacent mines is revealed, then change it to revealed blank ('B') and all of its adjacent unrevealed squares should be revealed recursively.
  3. If an empty square ('E') with at least one adjacent mine is revealed, then change it to a digit ('1' to '8') representing the number of adjacent mines.
  4. Return the board when no more squares will be revealed.

Example 1:

Input: 

[['E', 'E', 'E', 'E', 'E'],
['E', 'E', 'M', 'E', 'E'],
['E', 'E', 'E', 'E', 'E'],
['E', 'E', 'E', 'E', 'E']] Click : [3,0] Output: [['B', '1', 'E', '1', 'B'],
['B', '1', 'M', '1', 'B'],
['B', '1', '1', '1', 'B'],
['B', 'B', 'B', 'B', 'B']] Explanation:

Example 2:

Input: 

[['B', '1', 'E', '1', 'B'],
['B', '1', 'M', '1', 'B'],
['B', '1', '1', '1', 'B'],
['B', 'B', 'B', 'B', 'B']] Click : [1,2] Output: [['B', '1', 'E', '1', 'B'],
['B', '1', 'X', '1', 'B'],
['B', '1', '1', '1', 'B'],
['B', 'B', 'B', 'B', 'B']] Explanation:

Note:

  1. The range of the input matrix's height and width is [1,50].
  2. The click position will only be an unrevealed square ('M' or 'E'), which also means the input board contains at least one clickable square.
  3. The input board won't be a stage when game is over (some mines have been revealed).
  4. For simplicity, not mentioned rules should be ignored in this problem. For example, you don't need to reveal all the unrevealed mines when the game is over, consider any cases that you will win the game or flag any squares.

这一题乍一看好像蛮复杂的, 但实际上就是BFS, 只不过要注意的就是如果检测的点的周围有mine, 不需要将neighbor 再append进入queue, 因为根据规则2 和3 可知不需要recursive去继续, 其他的就是常规的BFS的操作, 然后看了discussion之后, 发现可以将其中部分code简化为一行, python果然是简洁的语言!

1. constraints

1) matrix [1,50] * [1, 50], cannot be empty

2) click will be 'M' or 'E', always valid

3) no 'X' at beginning.

2. ideas

BFS:   T: O(m*n)   S: O(m*n) # even we change in place, but we still need space for queue.

1, if click == 'M', change into "X" , return board

2. queue(init:[(orir, oric)]), visited(inti: set((orir, oric))), dirs

3. queue.popleft(), check neighbors , count number of 'M', if >0, change into str(count), else "B" and queue.append(neigb) if neigb == 'E' and not visited

4. return board

3. code 1 class Solution:

     def Mine(self, board, click):
lr, lc , orir, oric = len(board), len(board[0]), click[0], click[-1]
if board[orir][oric] == 'M':
board[orir][oric] = 'X'
return board
queue, visited, dirs = collections.deque([(orir, oric)]), set((orir, oric)), [(0,1), (0,-1), (-1,0), (-1,-1), (-1,1), (1, -1), (1,0), (1,1)]
while queue:
pr, pc = queue.popleft()
count = 0
# visited.add((pr,pc)) # 不在这里加是因为会time limit 不符合, 因为还是会有重复的加入情况, 因为不仅仅是上下左右,neib和之前的node只有一个connection, 现在有多个connection
for d1, d2 in dirs:
nr, nc = pr + d1, pc + d2
if 0<= nr < lr and 0<= nc < lc:
if board[nr][nc] == 'M':
count += 1
if count == 0:
board[pr][pc] = 'B'
for d1, d2 in dirs:
nr, nc = pr + d1, pc + d2
if 0<= nr < lr and 0<= nc < lc:
if board[nr][nc] == 'E' and (nr, nc) not in visited:
queue.append((nr, nc))
visited.add((nr, nc)) # 所以visited加在这, 自行体会...
return board

3.2  updated code(更简洁)

 lr, lc, orir, oric = len(board), len(board[0]), click[0], click[-1]
if board[orir][oric] == 'M':
board[orir][oric] = 'X'
return board
queue, visited, dirs = collections.deque([(orir,oric)]), set((orir, oric)), [(0,1), (0,-1), (-1,0), (-1,-1), (-1,1), (1, -1), (1,0), (1,1)]
while queue:
pr, pc = queue.popleft()
#visited.add((pr,pc))
count = sum(board[pr + d1][pc + d2] == 'M' for d1, d2 in dirs if 0 <= pr + d1 <lr and 0 <= pc + d2< lc)
board[pr][pc] = 'B' if count == 0 else str(count)
if count == 0:
for d1, d2 in dirs:
nr, nc = pr + d1, pc + d2
if 0 <= nr <lr and 0 <= nc < lc and board[nr][nc] == 'E' and (nr, nc) not in visited:
queue.append((nr,nc))
visited.add((nr, nc))
return board

3.3 DFS, 但是本质一样.

 # DFS   T: O(m*n)  S: O(m*n)   # only difference between DFS and BFS is one use stack , the other use deque. so to the 2D array if can use DFS, usually can use BFS too.
lr, lc, orir, oric = len(board), len(board[0]), click[0], click[-1]
if board[orir][oric] == 'M':
board[orir][oric] = 'X'
return board
stack, visited, dirs = [(orir, oric)], set((orir, oric)), [(0,1), (0, -1), (1, -1), (1, 0), (1,1), (-1, -1), (-1, 0), (-1, 1)]
while stack:
pr, pc = stack.pop()
count = sum(board[pr + d1][pc + d2]== 'M' for d1, d2 in dirs if 0<= pr+d1 < lr and 0<= pc + d2 < lc)
if count > 0:
board[pr][pc] = str(count)
else:
board[pr][pc] = 'B'
for d1, d2 in dirs:
nr, nc = pr + d1, pc + d2
if 0 <= nr < lr and 0 <= nc < lc and board[nr][nc] == 'E' and (nr, nc) not in visited:
stack.append((nr, nc))
visited.add((nr, nc))
return board

4. test cases

题目上的两个cases

[LeetCode] 529. Minesweeper_ Medium_ tag: BFS的更多相关文章

  1. [LeetCode] 490. The Maze_Medium tag: BFS/DFS

    There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolli ...

  2. [LeetCode] 207 Course Schedule_Medium tag: BFS, DFS

    There are a total of n courses you have to take, labeled from 0 to n-1. Some courses may have prereq ...

  3. [LeetCode] 733. Flood Fill_Easy tag: BFS

    An image is represented by a 2-D array of integers, each integer representing the pixel value of the ...

  4. [LeetCode] 690. Employee Importance_Easy tag: BFS

    You are given a data structure of employee information, which includes the employee's unique id, his ...

  5. [LeetCode] 130. Surrounded Regions_Medium tag: DFS/BFS

    Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'. A reg ...

  6. [LeetCode] 849. Maximize Distance to Closest Person_Easy tag: BFS

    In a row of seats, 1 represents a person sitting in that seat, and 0 represents that the seat is emp ...

  7. [LeetCode] 513. Find Bottom Left Tree Value_ Medium tag: BFS

    Given a binary tree, find the leftmost value in the last row of the tree. Example 1: Input: 2 / \ 1 ...

  8. [LeetCode] 821. Shortest Distance to a Character_Easy tag: BFS

    Given a string S and a character C, return an array of integers representing the shortest distance f ...

  9. Leetcode之广度优先搜索(BFS)专题-529. 扫雷游戏(Minesweeper)

    Leetcode之广度优先搜索(BFS)专题-529. 扫雷游戏(Minesweeper) BFS入门详解:Leetcode之广度优先搜索(BFS)专题-429. N叉树的层序遍历(N-ary Tre ...

随机推荐

  1. grep和sed替换文件中的字符串【转】

    sed -i s/"str1"/"str2"/g `grep "str1" -rl --include="*.[ch]" ...

  2. vue笔记 - 生命周期第二次学习与理解

    对于刚接触vue一两个月.才仅仅独立做过一两个vue项目的小白来说,以前一直自我感觉自己知道vue的生命周期, 直到前两天去面试,面试官让我说一下vue的生命周期... 其实我的心中是有那张图的,但是 ...

  3. 异构GoldenGate 12c 双向复制配置

    1.配置window,添加checkpoint表(本文windows和linux互为source和target) GGSCI (WIN-GM5PVS1CILH) 1> view param ./ ...

  4. Elasticsearch 学习之 Marvel概念

    概要 含义如下: 搜索速率:对于单个索引,它是每秒查找次数*分片数.对于多个索引,它是每个索引的搜索速率的总和. 搜索延迟:每个分片中的平均延迟. 索引速率:对于单个索引,它是每秒索引的数量*分片数量 ...

  5. HTTP协议详解(真的很经典)(转载)

    HTTP协议详解(真的很经典):http://www.cnblogs.com/li0803/archive/2008/11/03/1324746.html 引言 HTTP是一个属于应用层的面向对象的协 ...

  6. 用Ant给Unity3D导出Eclipse工程打包APK

    我们经常需要出完apk后,告诉我们改版本号,或者包名什么的,但是每次打包时间又很长.索性我们就出一个eclipse工程,然后用ant自动打包. 1.设置环境变量 2.生成build.xml文件 and ...

  7. howdoi 简单分析

    对howdoi的一个简单分析. 曾经看到过下面的这样一段js代码: try{ doSth(); } catch (e){ ask_url = "https://stackoverflow.c ...

  8. Unity3D 面试三 ABCDE

    说说AB两次面试: “金三银四” 三月份末又面试过两家:共和新路2989弄1号1001这家找了我半天,哇好漂亮的办公大楼!问了保安才知道,这个地址是小区地址.另一家也是创业公司面试我的自称是在腾讯做过 ...

  9. maven常用的plugin

    maven-compiler-plugin 编译Java源码,一般只需设置编译的jdk版本   <plugin> <groupId>org.apache.maven.plugi ...

  10. Laravel 中的异常处理

    这篇文章里,我们将研究 Laravel 框架中最重要也最少被讨论的功能 -- 异常处理. Laravel 自带了一个异常处理类,它能够让你以简单.优雅的方式 report 和 render 异常. 文 ...