Josephina and RPG

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 511    Accepted Submission(s): 139
Special Judge

Problem Description
A role-playing game (RPG and sometimes roleplaying game) is a game in which players assume the roles of characters in a fictional setting. Players take responsibility for acting out these roles within a narrative, either through literal acting or through a process of structured decision-making or character development.
Recently, Josephina is busy playing a RPG named TX3. In this game, M characters are available to by selected by players. In the whole game, Josephina is most interested in the "Challenge Game" part.
The Challenge Game is a team play game. A challenger team is made up of three players, and the three characters used by players in the team are required to be different. At the beginning of the Challenge Game, the players can choose any characters combination as the start team. Then, they will fight with N AI teams one after another. There is a special rule in the Challenge Game: once the challenger team beat an AI team, they have a chance to change the current characters combination with the AI team. Anyway, the challenger team can insist on using the current team and ignore the exchange opportunity. Note that the players can only change the characters combination to the latest defeated AI team. The challenger team gets victory only if they beat all the AI teams.
Josephina is good at statistics, and she writes a table to record the winning rate between all different character combinations. She wants to know the maximum winning probability if she always chooses best strategy in the game. Can you help her?
 
Input
There are multiple test cases. The first line of each test case is an integer M (3 ≤ M ≤ 10), which indicates the number of characters. The following is a matrix T whose size is R × R. R equals to C(M, 3). T(i, j) indicates the winning rate of team i when it is faced with team j. We guarantee that T(i, j) + T(j, i) = 1.0. All winning rates will retain two decimal places. An integer N (1 ≤ N ≤ 10000) is given next, which indicates the number of AI teams. The following line contains N integers which are the IDs (0-based) of the AI teams. The IDs can be duplicated.
 
Output
For each test case, please output the maximum winning probability if Josephina uses the best strategy in the game. For each answer, an absolute error not more than 1e-6 is acceptable.
 
Sample Input
4
0.50 0.50 0.20 0.30
0.50 0.50 0.90 0.40
0.80 0.10 0.50 0.60
0.70 0.60 0.40 0.50
3
0 1 2
 
Sample Output
0.378000

坑点: 有可能超过c(m,3),忽略可A

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <vector>
#include <iostream>
#define INF 10000005000
using namespace std; const int maxm=10500;
const int maxn=150; typedef long long LL; int c[20][20],a[maxm];
double dp[2][maxn];
double cc[maxn][maxn]; void init()
{
memset(c,0,sizeof(c));
c[0][0]=c[1][0]=c[1][1]=1;
for(int i=2;i<=15;i++){
c[i][0]=c[i][i]=1;
for(int j=1;j<i;j++) c[i][j]=(c[i-1][j]+c[i-1][j-1]);
}
} int main()
{
int N,n,M,cur;
double res;
init();
while(scanf("%d",&N)!=EOF){
n=c[N][3];
for(int i=0;i<n;i++) for(int j=0;j<n;j++) scanf("%lf",&cc[i][j]);
memset(dp,0,sizeof(dp));
scanf("%d",&M);
for(int i=0;i<M;i++) {scanf("%d",&a[i]);if(a[i]>n)a[i]=0;}//ATTENTION!
for(int i=0;i<n;i++) dp[0][i]=cc[i][a[0]];
cur=1;
for(int i=1;i<M;i++){
for(int j=0;j<n;j++) dp[cur][j]=0;
for(int j=0;j<n;j++){
dp[cur][j]=max(dp[cur][j],dp[cur^1][j]*cc[j][a[i]]);
dp[cur][a[i-1]]=max(dp[cur][a[i-1]],dp[cur^1][j]*cc[a[i-1]][a[i]]);
}
cur^=1;
}
res=0;
for(int i=0;i<n;i++) res=max(res,dp[cur^1][i]);
printf("%.6f\n",res);
}
}

hdu4800 Josephina and RPG 解题报告的更多相关文章

  1. CH Round #56 - 国庆节欢乐赛解题报告

    最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...

  2. 二模13day1解题报告

    二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...

  3. BZOJ 1051 最受欢迎的牛 解题报告

    题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4438  Solved: 2353[S ...

  4. 习题:codevs 2822 爱在心中 解题报告

    这次的解题报告是有关tarjan算法的一道思维量比较大的题目(真的是原创文章,希望管理员不要再把文章移出首页). 这道题蒟蒻以前做过,但是今天由于要复习tarjan算法,于是就看到codevs分类强联 ...

  5. 习题:codevs 1035 火车停留解题报告

    本蒟蒻又来写解题报告了.这次的题目是codevs 1035 火车停留. 题目大意就是给m个火车的到达时间.停留时间和车载货物的价值,车站有n个车道,而火车停留一次车站就会从车载货物价值中获得1%的利润 ...

  6. 习题: codevs 2492 上帝造题的七分钟2 解题报告

    这道题是受到大犇MagHSK的启发我才得以想出来的,蒟蒻觉得自己的代码跟MagHSK大犇的代码完全比不上,所以这里蒟蒻就套用了MagHSK大犇的代码(大家可以关注下我的博客,友情链接就是大犇MagHS ...

  7. 习题:codevs 1519 过路费 解题报告

    今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...

  8. NOIP2016提高组解题报告

    NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合

  9. LeetCode 解题报告索引

    最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中......                        ...

随机推荐

  1. Go第二篇之基本语法总结

    Go语言标识符 标识符以字母或下划线开头,大小写敏感 _是特殊标识符,用来忽略结果 Go语言变量的声明 变量(Variable)的功能是存储用户的数据.不同的逻辑有不同的对象类型,也就有不同的变量类型 ...

  2. 蚂蚁感冒|2014年蓝桥杯B组题解析第八题-fishers

    蚂蚁感冒 长100厘米的细长直杆子上有n只蚂蚁.它们的头有的朝左,有的朝右. 每只蚂蚁都只能沿着杆子向前爬,速度是1厘米/秒. 当两只蚂蚁碰面时,它们会同时掉头往相反的方向爬行. 这些蚂蚁中,有1只蚂 ...

  3. UVa 10118 免费糖果(记忆化搜索+哈希)

    https://vjudge.net/problem/UVA-10118 题意: 桌上有4堆糖果,每堆有N颗.佳佳有一个最多可以装5颗糖的小篮子.他每次选择一堆糖果,把最顶上的一颗拿到篮子里.如果篮子 ...

  4. samtools一些文档

    https://github.com/samtools/hts-specs

  5. ZC_C++类函数指针_模拟_Delphi类函数指针_Qt例子

    qt-opensource-windows-x86-msvc2010_opengl-5.3.2.exe ZC: “const QString” 作传入参数的时候,不太会弄... 貌似 还是在进行构建等 ...

  6. HTTP请求GET/POST查看工具

    当你有一个http的get请求需要知道结果,可以直接在浏览器上输入,然后等待查看结果.    那如果是一个post请求呢?推荐使用一个国外工具Send HTTP Tool.    传送门:http:/ ...

  7. 一个简单可参考的API网关架构设计

    网关一词较早出现在网络设备里面,比如两个相互独立的局域网段之间通过路由器或者桥接设备进行通信, 这中间的路由或者桥接设备我们称之为网关. 相应的 API 网关将各系统对外暴露的服务聚合起来,所有要调用 ...

  8. jsp forward跟redirect区别

    forward 相当于php的 require/include 属于服务器包含/跳转 request.getRequestDispatcher("result.jsp").forw ...

  9. centos系统lvm的安装

    今天安装redhat6.1在分区时提示”可引导分区不能位于逻辑卷上“,原来linux的引导区不能放在逻辑卷上. 解决方法: 1.先建立一个物理分区划给/boot分区 2.剩下的空间划给lvm. 然后开 ...

  10. consensus sequence

    consensus sequence:称为一致序列.一些遗传元件(如启动子)中反复出现且很少有改变的DNA序列.不同种生物编码同一种蛋白质的基因也会有共有序列.通过序列比较发现相似但不一定完全相同的核 ...