P1349 广义斐波那契数列

题目描述

广义的斐波那契数列是指形如an=pan-1+qan-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。

输入输出格式

输入格式:

输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。

输出格式:

输出包含一行一个整数,即an除以m的余数。

输入输出样例

输入样例#1:

1 1 1 1 10 7

输出样例#1:

6

说明

数列第10项是55,除以7的余数为6。

简单的矩阵加速

推导很好推吧

两项式一般也就\(2*2\)矩阵

自己手玩一下就能推出来

\[\begin{pmatrix} a[n],a[n-1] \end{pmatrix}=\begin{pmatrix} a[n-1],a[n-2]\end{pmatrix} \times \begin{bmatrix} p,1\\q,0 \end{bmatrix}
\]

从而可以得到

\[\begin{pmatrix} a[n],a[n-1] \end{pmatrix}=\begin{pmatrix} a[2],a[1]\end{pmatrix} \times \begin{bmatrix} p,1\\q,0 \end{bmatrix}^{n-2}
\]

#include <iostream>
#include <cstdio>
#define int long long
using namespace std;
struct node {
int m[40][40];
}a,b;
int mod;
node mul(node x,node y) {
node c= {};
for(int i=1; i<=2; ++i)
for(int j=1; j<=2; ++j)
for(int k=1; k<=2; ++k)
c.m[i][j]=(c.m[i][j]+(x.m[i][k]*y.m[k][j])%mod)%mod;
return c;
}
node fpow(node ss,int p) {
node ans= {};
ans.m[1][1]=ans.m[2][2]=1;
while(p) {
if(p&1) ans=mul(ans,ss);
ss=mul(ss,ss);
p>>=1;
}
return ans;
}
int p,q,n;
main() {
cin>>b.m[1][1]>>b.m[2][1]>>a.m[1][2]>>a.m[1][1]>>n>>mod;
b.m[1][2]=1;
if(n==1||n==2) {
cout<<a.m[n][1]<<"\n";
return 0;
}
b=fpow(b,n-2);
a=mul(a,b);
cout<<a.m[1][1]<<"\n";
return 0;
}

P1349 广义斐波那契数列(矩阵加速)的更多相关文章

  1. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  2. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  3. 洛谷P1349 广义斐波那契数列(矩阵快速幂)

    P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...

  4. 洛谷——P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...

  5. Codevs 1574 广义斐波那契数列(矩阵乘法)

    1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...

  6. 洛谷——P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  7. P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  8. Luogu P1349 广义斐波那契数列

    解题思路 既然广义斐波那契,而且数据范围这么大,那么我们使用矩阵快速幂来进行求解.大家都知道斐波那契的初始矩阵如下 $$\begin{bmatrix}1&1\\1&0\end{bmat ...

  9. [ZJOI2011]细胞——斐波那契数列+矩阵加速+dp

    Description bzoj2323 Solution 题目看起来非常复杂. 本质不同的细胞这个条件显然太啰嗦, 是否有些可以挖掘的性质? 1.发现,只要第一次分裂不同,那么互相之间一定是不同的( ...

随机推荐

  1. Windows server 2016 安装及ORACLE 12C 安装

    首先创建虚拟机,选择windows server 2016 启动虚拟机,进入安装界面,语言默认中文,选择下一步 选择标准安装(桌面) 选择接受条款 选择自定义安装 进行分区,如下图所示 进行安装 设定 ...

  2. windows kibana的连接使用

    下载后解压使用,打开config目录下的kibana.yml文件,然后添加:elasticsearch.url: "http://localhost:9200"  表示你要添加的e ...

  3. oracle(六) physical read and logical read

    1.物理读:从disk到buffer cache.其产生的主要原因是: (1) 在数据库高速缓存中不存在这些块 (2) 全表扫描 (3)磁盘排序 2.oracle中读写disk的单位是block.而用 ...

  4. javaScript 载入自执行

    1.注册可以直接调用f()中的b(),c(),d() .原因?自己想. <!DOCTYPE html> <html> <head> <meta charset ...

  5. 前端 HTML 常用标签 head标签相关内容

    HTML常用标签 head标签 我们首先来介绍一下head标签的主要内容和作用,文档的头部描述了文档的各种属性和信息,包括文档的标题.编码方式及URL等信息,这些信息大部分是用于提供索引,辩认或其他方 ...

  6. 万恶之源 - Python基础

    Python简介 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆(中文名字:龟叔)为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程 ...

  7. Flask中'endpoint'(端点)的理解

    翻译整理自Stack Overflow:http://stackoverflow.com/questions/19261833/what-is-an-endpoint-in-flask 原文中用到了m ...

  8. windows server r2 之如何设置共享文件夹访问不需要输入用户名和密码

    第一步: 打开guest账号.单击桌面“开始”按钮,找到“控制面板”并打开,选择“用户帐户”并单击就会弹出一个窗口,继续单击下方的“管理其他帐户”,然后选择“Guest”,点击“启用”. 第二步: 在 ...

  9. memcached小试牛刀

    memcached安装 [root@localhost ~]# cd /usr/local/src [root@localhost src]#wget http://www.memcached.org ...

  10. JavaScript实现功能全集

    JavaScript就这么回事1:基础知识 1 创建脚本块 <script language="JavaScript">JavaScript code goes her ...