正解:构造

解题报告:

传送门!

这题首先可以画下图找下规律,,,然后通过找规律可以发现,最终的方案一定是一条主干+一些枝条,而且这些枝条的分杈一定小于等于2

明确一下主干的定义,最左边的节点和最右边的节点之间的路径为主干

如图

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAbsAAABGCAIAAADacK06AAAgAElEQVR4Ae3dB5gdVdkH8EmCEMF80gmoYQMqkV6kKCBFkWIIReJHUQyIKE0BpYjyCBYe+UDU0BRQAhZAQaQkgHRpYgARaUKUUESqCWKAhHK/3+wJs5N7786dmTu72Q33PPfZnXLm1Pf8z9vOOUNqtVrUCZ0W6LRApwU6LZCjBYbmiNOJ0mmBTgt0WqDTAnELLNRphoHZAgnrP2TIwCxgp1SdFngrtkAHMQdirwe4fO216Pnno/vvj2bOjODm0KHRsstGG24YFziB0eRiIFajU6ZOC+RrgUHEH3QQM1+X9mMs1OP3wgvRHXdEF14Y3X139O9/x9kPGxaNGhXtsEO0wQbR2mvHt+BSzA5o9mPn9GFWjajR+KQPs++XpJMavf56TLpJwA0g40FByUM6lp+k2+b7RaAhxHTffdE3vxk9/nj0wAPR7NnRG2/MLdrb3hYtuWT0gQ9EW20V7bpr1NU1aOhsvrftwC+A3tf1r74a/w3Y4e/w4T04UiGgJGhVYZrZLZzkqIJ+Z5wR3XNPXFPPl18+2mWXaLXVore/fRDQcwcxszu6X9+iHpI4uNxzz1gYd5tgZbocJuSllorjHHpoNHJkLK13wuBtgQAlOvqVV6K77opOOSV66KFYgBDe+95o4sRoscVi3Ay93D7AJdmhtJdf7iGwhReOAStNS+3nle6UQNsvvRRdfnl09tnRX/4S/ec/MYX7qR163muvaI89ove8J1ISodrc0yVp87qDmG02YJPPS7Pt5t7bb4/23XfIgw82Sbbu0f/8T/T5z9e+9rWY66w2DBmw1FptPQdGarASjkCQn/88OvPMHggLpVt88WjCBB0dQ8k73hE/a6dzwJPsSC3PPhv9/vfR974X/fOfcZqeb7tthJZGj47e+c6IKCOXdjKKE503zJkT0/aRR8a6JteNAVgrxllnxfzmiBHx+2oL0JhjuScdxMzbbgEHc6Lh66+//tJLL+WM/GYJhjz11CKHHrrwVVcNbcpavhmt5/9yy9VOOun1sWNfeiPnBz2fNr+ClYssssjCYZZPRfFcSD3oXFbTAvoNq3XBBdH++9djZTqDlVeOjj462nHHyDQplOsKeISvpOq59dbo3HOj666LheJ0AJQHHhh9/OPRRhvFGcmlXEbpNMO1jADlUUdFN90Ui+TZwczxiU/EwJ1meLM/6c+3gwYxE/RxASCS2/5srJdffvn555/Pgx0vvPDCFVdcUaiQQ4YsNmvWBhdfvM799y+CuPOEESPe2HHHZ1df/ZLXX38+T/yWcWDlmmuuucoqq9RB8KKLLrrkkksWqk7LvAZahIUWWihPz1ZV7NDFzz0X/frX0eGHx2xmdlh11ejrX4/tfosuWhLIwOXf/hb98IfROedkwRY9z7HHRuPHx5hVCWiq6fTp0Ze/HF11VXPusq7i8j3++FhCp46oCrLrsmjndnAgZhirhjHe7T//+c+jjz7qop1ql/hWjtOnT7/mmmtafmvgzZgx47e//W3LmKkIlJGjo+iIKNojihZNPc++1AgPR9EBUXRjFFXQIBBz3XXXXWONNdLNO2zYsNGjR2+99davGXMLaEBgK6+88mLGKBfl7uCiTwE0cHwMIMccE8HNPGH11aOf/jRab72Y+SoEJQGdqXqOOy46//yY08wOK64YGx6xtHQChTJqmiz9LIw+4ojY/SNn+OAH45qaJII+t/0yJPnCkFdffTUwBMSpocX52DLeRQmv0acklVQygcsXX3zxb3/721133fW73/0uPaSTmH16Icdnn332PnaZPgnDo2itKFovirr13nmzgLPLRNG4KLozinLTY++Jz5kz54/dIR1FLy+zzDI33HBD/7d5uhh9fb3ddtuZGBDbiiuuuPrqq5s8AuH1BZEHCJs2LcavnHCp+vfeG112WewpERSahRqEkecHP4jF/5ZwKdlHH40NUDwxNt54rk6zUF7pyNQOTzwRXXFFbGXKH6gOpkyJ3v3uaiA7yRdQhiE8c+ZM3fqhD30IYWMIkgh5LsogpnQRE45j1qxZs2fPNiWPGDEChfUFbYU6qCq4vOmmm372s5/95S9/eeSRR/LUbVDF0RHLRdHyxVdhYUhXLoizxRpGXz/zzDO/ZylYoMODDz74TgJhFK2zzjr777//+9///sUXX7zocMrfQjivSy6JQbBQ+M1vov/93xg087OZAZ3pLq++OhdchvKQ38EcLm+ZZdpiM1UT4UydmqUHaGwBs8i110abbRYz1LSrlQQYQqV2ySWXXHDBBU899RTuctddd/30pz/97ne/u1Avl0RMzAh2j6ruoYceWm655caOHfvBD34Ql1tJ3dKJGK64aCMW63P22WfjdFhU0hEWoGvKy3z6y546s8b4dUIFLfDP7iAhOh9Di3Zizz33fN/73heSrpwbIKuApPyCaijGP/4RW5O/+91Ym5k/BOPSM8/ExuicwSC78cZop51iTwxCcWm5WDp/+EO8BCN/1kpI5cYTmf/AmmvOdTbKWeyMaK+88gqV2k9+8pN7770XfIl5+umng5cDDjhgiSWWyPiw7lUZxMRd/v3vfz/zzDN/+ctfwq/hw4f/9a9/PeqoozbccMNCaF1XlMZbGT333HPEcAzOlClTkPSgg0tTWb42MZMOQygljN7dFgv92NZcjHQI3f429sJb7QnJydC6+eabcSKG06hRo4yofJ2Yt6kA0N//HlEsFm1vhmbMFzaT72TOIIubb45uuKGYXOyrv/419nZCk+1YYF58MYLUeVQBddWBaU2dkOqi5b8lDT/88MPE0wCXPoQn+LC99967zxHzv//971VXXXXaaaeFAaYEV155Jdn8F7/4xTtKqFgaKh2SNYDN9uYEUwE2U4UbIs63BziOt3WHbNZDlPe85z2GXA4kWvS118ZMm7YwfUMh0BwxYui66y41YsSmtdqsdpqD0sMsyMQvES1vQs5R5nYyHNDfmqoR+TnnnIPODzroILLbUkstFUSo7B7PXyuQVBQuQ+KYr3HjinnezJoV+RUNNI+//GV06aVzzS9FPw/xg/tUCcQszdVmlJNgXkfVUAWpe57fBFSGx5QrkkrnbYzxvMkoa6FXUjPPP/nkk5MmTTrxxBPTGdWlg3zpT5k481e4LoU8txo0aGyTyAbPqquuyhEHf508bLxQsC222GKrrbaSQuPbuiczZw499dSFTj65gKS20EI0TW+bOHH9VVY5N6OV6jJqvFU88y172j/+8Q/XtONXX301yEhiamd1ya5sErn0hSoQh9Ofy7dPlYnyCuDobzrfcI0ONcsPf/hDhoLNN9+cOSjgZiWgWRoRMH35jUWNlSr0BJc3b4cU+rqtyHyCw9gyr5Ruq5YlADL33HPPyJEj3/72t+fs1jKICZ6MH9YejEkok/wQU84sM6phzCDTJ554gr6SnYeONgMIZKcMa6+99kYbbaQ8Gcm2+Qp23HrrrXfeeafpSFLyXXbZZcePH/+FL3yhED+fUQxkgTu3vwYDpfW2ObkPyqyNNx4ycuSwRRYpZu9rLAmF3WGHHRbaHw099thjLGwBR9SXSfFjH/sYP83GDyt8onmpqp9++unQ6ciMivxTn/oUV9AKc0knJSMYTQBX3zqwTqKRzY8//nhy+kc/+tFPfOIT9PVEBxJVEqHEhf5FsLzErb0pGsrlDGdzElW6PMzIlaCVrBUgf2DtGTMm/pWrbNOMkLFQ9+r+++8HMtzpurq6cipeynQ8fFxrrbW23Xbb6667jmIRwwW2dthhB+xeXYEK3SJfQ/Txxx+/6KKLzjrrLEqHMHLqEjGQMDsqrxjI93Of+xxXQdqAxuao+7D0rYmBIpUWYurUqVgwML3xxhuDaQUonWbjh4bQJptEm28ecTrJI0MhJuuO6eZZMysMmnH55ZffZZddCA20IlJW33Hjxh188MFjxozpu0aWEVrSpNwhgKZeNi3ttttuhxxyyNJLL11hBdNJBcS8sTsYOYGtpgIS6qLdcccdpsy7775beRQMvwk303GKXjNDf/jDsedNIW0TirNjRYlxhqigcyHQRJDsXoVMTL01AmUP43szPr75F/xA7TWzzjplato8xXjrr2G4Ou4QHLqN4iQazoClBJtpmYaHLSm8DGJCRhDJA2OFFVYwqJQDen784x8vTUMIlzKU7MPOw/5Of0SnVgeXagIojShiGrw2yWM9TPt4n0qUp0kLNl6ADKBsYjj//PONJY1remDmqlxKxWZ+5CMRz/eWiGm0vv/90W67xTRdbQBVOEqaO7W77bbb9IJe3muvvcBltRk1pibHL37xi8QF4gVaQmN77LFH3zGYCoCoUO+OO+7Io0iOYYbwlyWzUW+uKUycUJU/yqGHHsr9SFFL07wV3NtvH9tkCnnKgUvLJUsIVD/5SbwFRn7NGW7MfGyhDqfIBs6ssetaPOEY8J3v5GWoOU6p5hZbRMH1pv3cQ+FQ1/rrr6+jgQwlW1LiadOmEao222wz2NISLn1VBjF9Bo/xd1hZ/JeiAJF25GLMxZ///GfjhAREHue3RDZPquQCWhHQqA7f+973olfOxga2h8b2/3Qvtc1T1XSCRa/VDjrL3eykZRVGrYsm0jR+Mu2rsZ2D//WvFp5r6IkvhIXGn/pUvOFb5QwmXDAb69Ddd9+dBlbDqi/7lcL3dSNLHz5+9rOfla/+xVqCMxdN263Ch7JAyV/+8pdxH6qPFIk4BhKftjo69PaWW27RICZ4Ejo5g6aihIQOBfQ7f0NShb0w8huFbYxGNWKaLNQq8poxI15O/uSTedlM1I0F/tjHohVWKJZX036xiIixnkNoSjfeNGL8UO1ITibo9pj4+vTNbSa5TTbZBFNpUkzYTH0KcCg0sWLiuG1B52IUDTILoeiHSfw3E3iD6Ic0uZXutNNO4E+hG+kPgZocvv3tb19//fWqaorwuaSSRJJk++eiwnzVw48V7YUXDNTaD35QW2stgBU7Zi60UG3kSEv3asOHx7d+Q4bU3vnO2kYb1fbfv3bhhbXHHos/7G6JiutdV8FwW3EeAym5dH1dcxi49NJL0dtqWJ1egvnSqkoSusFGlVSiNqHrr7yytuWWc3s89HL232WWqR14YO3BB6n7467P2fuizZxZ22WXmKiy00/ejhlTmzy59vLLebPIbgGeFzfeWNt++9pii7UowEor1SZOrP3zn31C23rq2muv/fCHP1wnGVBD0bkBFhMkAsiuy7BjjjmmF6ro9TEMDqHXGL2/UBovFQtjDP7+8Ic/8EmiQiIAotRg6U++NvmTiJmkCWtUWqYIlhbsrdzFebMU9drc5PM+uqg2XxoV87+NZH784+jii6OHH4515HSUZlo7Bm69dex5Z3OElVaKn+BKDjoofrj++j2bu3Q3RpV1ratguK0ygwGWVrq+rimdsJw82IkvqBQ7SUKvYzaNPVsH0B15y2gGQOsGYcsqhl7Du+vZxx6LZQsjo3tw1H+KGCguxUcqHMJRCIIh1LOHJQv8WtIACberK+IAj83M1idKCl+5zz7R2LHxrmuFmNn6or95r5y4YwVgOlULMjEiTyorR+wkPnSNNaL99oslJ4rrkK9XFQZ4Qpwlgz/yyCNprQvY0e8bbLABEUcc1xmZlkHMjOTyvKIKZJrk6QYrf/rTnzJDg846Xbt0MJumcSaInXfe2V8qW9JidmXy5D5w4qAYBgZDxaIIa37JLEaCh8iLjhIyfuELsfXc2t5ttonJd7vtYikJVRkqRhGS0rOZnTtw6jqYSoLG0B6dDx4TP2KShqEYkEb/uTD8oCcnJLSaKGpyUqm+049wxKpHGkagxvcEnCVQghJgBwPIRz8aq2I4FTETAR2u78w4QNNbcQINZFCCV35wEPFATOkALL/GQJMuGsKz7RsyqwQu5SJ3NQWatBBmCItRA3TiBphbnF5lf7nPfjbeBlRNA0yHMjeWsM0nelOvEcxZTQL3JsHAV1Jl0j7p+uzu62/ENFfDx1/96lcnn3wyrESIjVipDmZsWkusJcEH4RLM22ypAfV5GBKIxrKKSZNi1vKWW+ZipTFA426mNckjJnMv8kK74Rd2Wh1QdVlQC2PYBOsqW4FggFHZA034mK4y6sWzkPUwpO9617uMvUCr2aMunYJrUEJpSDeNzCUPOhmL/WAiHNl99+hzn4tsXATpbJtmlhXHkiFab3wZuMk5d8IgWm/6QbmgKxgdYCsUhjWJkcfcTIeI9lCd+NUG4A6RVZOopCRkJnsUObSKkUc1cQM4bgWrPN90LfSp8MADD2Az08iDtbQDCzcj3Zfdd/2KmGE25jzEg4REUyfphIoprrkaSu6zzz4stljLovJOuoEG7DV6tWz21FPjXa0MAwE9mX4tgLMHtUFi2HTC/G0BpChgMGnYV1pppa6uLuwJZ+Gg50rKhqrJ5jzPGI7+/e9/i5YojpI42RcwIrjyECmgpO0n8GJ+NvcFXqiCHQacvetdsTeSXwKaeFLxw8kleYAGti63XKzSgVYQGZsJGT3xw+V9+tPxUSjceoItPk+C2fVq+hazqTrYahXcdNP4pzwYW5qHAP1Nv6rwIbOt3TC4i6WFBj1LqmByBDg6PSO7krbyjBQzXini7bffft5554HLxmhgnh5h9OjRFLF8lYIk3hhtUD/BXSJTehzcpS0VcJfspDoIPuIXeAvRXZppq5KGBnVbDZzCo0zKdD6YVJYAlEcH30zsZLqEmFArej/wgQ+IzPmMx5uYjWbM9CfpazTgBxbNl70FoHbwwTH9UOMgIZPu734XT7SHHVZgNyOkBSW5/WI2YVYwXiNL5Ef8B2f9E/CS8yuY8Lq6uojnuizdiU0ZuMZC9lcLRaBhjkV4nIcAfGM5kBe3IbZ/ztK0CThkEzvia4w5SJ8ESZweii/xbbfFG8Pwj0OvquhYKKeQm2x33jkeMwtQpQdpXzUvNmr8yEc+gn+khT/hhBO4PddJ6IafLeNsg8CGycudnGT6NzKzeZbmmfXyFJFATLh2/fUx8cBNky6W0KEXEBB6gt2cAWfq99YM+pHe2WIZoFS0BfoJMZUMUP7mN7+xYDnNDCtu8LVUgW222cYen+utt15LVULRSs73+AEu9Y4TIn/2s3jHQBu6hJ2+aPRtdm2PftYeyh1E3wkDtgWAJkc3Gnb8yMSJE0niaV2YYnvO+52OHg2zvTK4b7/99mi7khpBQ6wZ0DSnunAagG3cCOY2zUQ2++4bc5qFQLOSUg3GRPBkHBnLMWR9i5jBGoWqwCXLOMRk9klzwlSW1OqkGDpXtEiWSQyOg7EnMspM94S3tvTioot6djfgfW8fmi9+ce7St/wMQkZGnVd93QKWM1gDJheg+ac//amO03SLCfWWAZ3zHNfofffd19qHxDLbJstJCch9ghqH4m/y5BgxbZYBNM3KCMniyw4VZRNAm+3ft4ip6HydnPTw85///OKLL0ZDabjka2ketgKPwjU43Ieqtlml7Pbq57fomGWTC5GjRzldOgaLiVOgS6I2YgCluOTz0W/6o36u/oKXHeKEfSzjQBOT8qMf/YitHGvJdFBXWespuXOee+65hCoLxmhCKehJVCFaOSKHhigKaNJp+gs07caGop5+OiYtszIvC373CTl10LOuU9q/7UNbOcJCSTbUOOWUUy688EL68mSaVW42KVpL/kOEcQYfJn80FEL7tRogKQS4tHDYgaK4S0ePksQRMRcizpUW7fKyZLVE3x52iHuA9FrLYgQqhX3UlLTtcNCKYXTeCJqSApoELJYi9G97JB5IiSVdOi3zaowQSIX0zXTOEY02kxmVfjw4t+M32XCod0juHaJqbL3kCUQK67WSJ+QAKpT5ZisP4IhcGMcvu+wyfpdJyVyYojfddFPbDm255Zau068WpGtKep5DtmV1lh5BDYAiYtTsOGZeI5xI8AhCqYGzILXToKwLvKOsxGnayEoFCExWozMmNFaGTVbwihKfU6ftRaoyB5FRzLuM5k5MMxlTa7KeU5czqfNzhKqB5BqL1HlSugX6UCoHlzaFdwht3c6D1EAsPAs2XIa1j3feGbumg8vuXdNiMYrEhJQ/85lo3XU7HpeliXagfAg0ETOeUYFslorrvPzyy3Gatkrgm1lXSgZ0wfplOGsZG7mqLkKJW3MtivrSl2IDOp2mPFnPoSfx/KijYrUP0OyEalugT6Ryuksu9RZCsPbYPiO9hFPpCSZ0l6w9GOBqKzNAUjOxW+9IEj/99Nh1rtsMEMOldR3WPpLEqeepszqs5QDprzaLEYRrOGjfAz6bwYDJ/mMr+7QaKuSCe+AD7xM6UKDZck1enrJZ9mPVECkOg4vBpDenCIKeXV1zndvzJPJWi1NaKq8eMeEjrzRY6dw0jvVhl9akP1jDrd+0kxiPy0BqyasF4AJriWSD7XLixHhVT3Ahgo88LmnlqS+pn4LicgGob6cKSQsEfrOrq8vqIH7syBsyMnUmEZILGioaNIs4+GziHtoHTSpLoMm5EmhaEYQCsZzmaWZ0oEkLZG7264R0C5RGzCqlcjNq8Lu0bFyB+Fiw/KRLGeAyfahp+u1gv8Zawkd7xPrxTuepLqBmDuoOEWUTt3LWutoO7Q72jm4sf3ruJ5uzIViK5+K4444DmpjN9CfYT0s5GIKCpYg3tZjpFNKRc14H63mIfNVVsRUIKSJCbpuc26k7O5N0zpZsGa1KxEQKZk6ORPwu6bmbwiXfNCbyoPppWbhBFCHAJf8hNvG7744PaBaQKb906954Ha+1VryStxPeCi0A/sK+/VayOR3b9q+4B0dxpOsOLq1/I5Dxt2P/DJsnlMNNczDys7/Ghz40d3U2naZdNhDhJZfEM7SNiCiCOs7t6fYvfd0uYgZNDXAkg/DXJYYz9fzrX/9K+10qHHdLZGFzDYZFnCbKKEQcCCKEhEFrfFK6Cdr8UElojghEVJb2uPzTn+IZXjntMwQu2cQpLklGZnsPk/K3mWnn86paIBASUwlhNgm0KGa7EIp2GcI2KPwFmjznnG6CRTA0bGwIN9OaTep+5w4wkHLYtDiYZjN8mBQj/4VCqghOk13x61+PaY9POysQsnQIitoxqSd+mkVrlL8Yb4WYb9JFqbqG7rekB2tpfw2SOB1NnQyCdJw94DQecIl62BZlVQguQ9HI95CI91kgcdKulFBGuJ0vRBCyNpmziZvM77gj+uMf47ndZG5HGYvETewciUjl3VUO9ej8HUAtoAehCb0zseCuu+au6EdalM5WHLJmw01xilJXQt54TOK5I0AYhYjeZ5xxBnk8DZrEMquGHPALVQ0TH7YDmlqWvxoT+RFHxMVGk5zb1S5s+GLDDuJ5x+WoTforj5ih4ykuqbEpLu2jbgVkmhpCydDB2LFj+RJZY8ue6GFCTzmLHjZttn009s3JtJx1UTCPDltjsT6zEoLOEmSdM/fsaFzhHJ/y/e9HU6fGgA4ugyROa2kraQULknjRISdTNQqhxLfZZe681QKaF1099VR0773xWixTnTWsoakhpn1SLMQiHHARZ1EpTV0JqfNyp74nemMsuJHUuSfb1MPSIOZQ8Jp80k432ZXj0ENj9MRgQkw6TS5HiBP7SaXeAc122rYkYiZwySwOLiku6ySOUCb+E9zouao5/bHEgnGUCh+5ShB4OTZi4pB4MCahBmTNxmJ3Uvvr2esgEaPaaY6Mb+VLg4+dRHCCAowaFZ8pesopkVOfkKOgDA6uApe2ubQLUZtBjlRRRjJPEcPYL+zIHZLtIGnp5kVXfqzJZ5wRU5HJmDdYWirX7DraLGizW3qVSvb4wWk6eYUZ/dRTT+W2mS48wdyOsezmDmdPP2/nmnxjmbkQQJPd/Ior4ikBkr7FndsbubpC7VwSMeVBGOepi7W0QzC4rFNckr75prED2uYSXBJJChUrRKYffOCB6LTT4r2tTJWAA1+QBBIHMAWjNvsLm1Qnr6q9MLrkBRYNoSlT5kpqmFxsCDizdRu4BGeUlVTvdoHddtt4h9R2ghwpoTgnsXtif2ijAmJaAPfJT8ZsAplxAQumRutVaF0ElbVJqA26+85WZuo11VmOpW3DHJxuT6KDHxhFYKbGCRPiPXfbD1hIIwKP6bjKtOORMcwM4LksKuExpWPyJoODezNBEM/V6Mor4xEENC1LDxN/+5UajCk4d94OKXWm6ZwVKYmYMiODU1wKLuryZgp3MOnee+/tmJT07gM5yxSi6VoOOgRehj+A1Rjgqee25gWmJk8GQbtVVx5Mztjba6+NERNXgs1MZDenMMNKhOgJuLRpm8U8eEzj3JgvHYIHstMsVI0iQh0RvSz8zB/OeLFeyHEooLkS3qd0Odv/0MSgl9WOXGzmu/DCHsTEv1t8qEnZKxg0Qpu3n6MUZKpPjz8+Ou+8FidoU3Hq8bPPjgvgWIX24RsakrScHQ0ubT+cls1ZgVhN7VmDz6gKNGG9ydWhPagUU2sO9kPJsBKeksxcaA3VTBgR7fxWMFEyuJmfKJHLUJT5rWiAj5jK7373u7akrttlWmdbycPOw4OdCUjMookn8adNq02YYJMY+rwWPzbGrq7aN79Ze/rp5OsKLt54Iz4U1zm3m2xSW2qprJNLR4yojR9fu+uuuaeV+rB0cJKrs1X32KO29NK1RRdtUnGVdQavQ3r/7/9qM2ZUczhq6dK286FWmjOnNnVq7atfjY8UXnbZmqolfb3IIrXllqttu23tkEMq7lYk+dBDtSWW6MkrybTphRNrx46NO6Wdbk0aiihGOLvmmmuMnfRwNXBs6rHffvtRc4mTxG/zQkovvVS79dbauHE1TRoquPjitd12q919d23WrJjCjz02Ps95v/3i31e+Urvnnppj26srQps1qP5zpjZnzTcqCW0RMH369JaNb5IpHCyPPeecc0aPHm3DoXSvu0UHRx99tOXkzzzzDAhvmX1veb/ySu3yy2ujRuUla9Sw1Va122+PjzmuJKAYdCZNtOoAABEUSURBVHPRRbX1168tvHCLYoiw4Ya1Cy6oKXY7pPbqqzG97rprDQQ3Hb3JQyfRO1H6+9+v/fe/lVS3vxPRSuDSHPPJT9aWXLKmOknV0hfOavd2n31qjz9eWQn1EfhI59LyGpqfdFKML+0HI0KwQRzjeHrsuA6gedBBBz3yyCNYDdGqyC4mSFW+447adtv1HIxu0t1rr9pxx8Uz/ciRMb2Fn4lks81qRxxRe+CBmLSqKEL7lagyBQ6wPBYsMajbTljj2yGFF3nLZi8jlYNC7riEcaknvY7ZHDNmjN3bKC4ZfMLubcnb/BdBUmNR4dtoW8mcgWTH6ElfY+a2q3lGkH4IGYKeOBh2IrCVjvxOiC3ZQe42V6cUswKShohInpF406Tk6Ke+juFl1iQ9ZQdForIgMNJVWUrUjhKgLiPk6Ym/WKEgtqCtsCgFVdVFLn1Ldcjt4dhjY3k8o7LEST+uheRovgeNCscSBVA/apZCgdqHMEsTQkUwL5NQKJk4sjbUtlZSOiRV85LEQyN75Tk53dpiLf/Vr36V0pMxIMQP2ZRofz2mvkE8P+mk6Mgj4/3/w4ogFiHaBmZ0GuTuPg+ZxI1DHcQg5tQpRwMYTRKprufn5uIfL9QAIFwIkqWiJerYk2J3G4bb0G48eZLmDc8tKGB2q3MYVwCes9wfOfakU2t6XQYxJaR303DpyYorrnjggQeOHz/eTlZu26k5Cw9zBwRsCVVJlXQ5+6YNKJkLKGgyOtgrRpuWe4AYotyGaCpzlgEVQlhqRzYZDaA8GWVIih0uAr3Sh7LPUudlIEj6Q5huSyRKXrvG5ejo9Ke9XutW7/y1KZlt+oxn/Wj5M4cHMqPn7XRrkqtM1JHp1rkLat0yBOcYWzJXFZqqxTMSh9RwRO+EYyEyYuZ8RdHv7D9cxTe+8Q1jOPlKCzuNkgcSHhOq4nrEseIjLPoQLXRQoV4IdEhxaT3Ft74VE7+9hxGPVvVrDF4ZSiiZ4QtHBDfp6EPIT9KNySZPQhVUk4ONv1xWw/Ee2qRQvZIE6y7gEt8D21nIyLnkDtpNdgKSPnUiBp/WOP0VCreblMMg8hioSyJmOr9wPWrUKOOqfbjUK7rK8Jh3UVljhvVPMHrYFhMpNjOD52K0Z5yxbDE7YPfYqZUkZzComF+NK8IWR1EEWij4XI7m/257ad5PwTS/K7WWKYV9JQGdgUv7TjnhC8FJU5/au8xJyEtzbqoiGIcsKnicPHAZMlRTO43Ox2AGVYZKgnGrkfGP1P3XXXcdn/a6rYhpvbigQBBbERvDTr7iy+wTRwfqgiBOug2FyYkyhpUvIP748bFDO1jMDvqIEEPOA5fWYhg1lcBlyJSdmv8pzR7ExF3a+3H//fdPlrdkFyx5W9cCoHDGjBngEl8JE8NhnyxpVBzYzBBZW+Hf4akJKUlHe9obyJ7QOSG74MhO8mm4wNlaFuZxzi5sSKDngd4iKaQq1fMq4wpBYE7NjX/+c1bvkqpwZEyHcuktIA6DmWagUBnwTXL/1a/isY3CCgVwj59ljs/JYIbEFQ/Cgh7W85Zcc87yoLknnnj8jDNOu+mmm8PkjKzPOuvMlVYaNW7czjkTyYimm7gQmY3oMQZdqAo1AmgaolZ2mI14NBvn6dbwUPj1r39tPN9www2w0lC3CTf0DIgZdkhyXQcc6UTqrhXesOJrkUH56U9QF9DkThf8nauquywmT548adIkCwUDctlomTiM5VIpPHW6DL1dh1pjFXHoNISIVithJ7WSa64INjpxgYA96S2R8Jxw7EwRZ6WFrFvCV2WIKXuZtcwvu/TJW91TooeMRoQ3L+0lSfZc4BdsipUdJNVyHq5LASHiEyEmebMoj+lbcO+ASfkWChA2rGcnbVURhrzxxpAnnljszjs3mj17TEjw9deHPProouedt8Rjj1Wgx1RBwqDNQ43eosFUR5nINTLnmK9LP1AUr8+WvV/3YbhV8qK90zSd8DCMFA7thx9+OOA7++yzE+xLvsINuXYeRlhbaXGdTRt8KKZTgzBlWE4L6pxikGfcKTyZadKk1gMkKQDQNLfx8eIITBlaSVDU6dOnp90hyTRuVbaxBTJyxIDTSNp+NxhUeOZIB0r6BFMZLjI+D6/ANPbWOWOJ3qPlJ1UiZsvM8keoljrr8tWqLVG17pOct0CWwyan6BKhXJXliBdmL8pQRBQqTK029NVXV5gx44Ao6mHCX3pp6JQp7wDNlQRlZkspGlSQhLj77jHLUxq5gKYVL/Z1bqrC661IvrIel764qkZOMiKZcS+xwTYRNS0qJhFceB5eYaa4oIRXhFBcFaz012gHnZSe2KXAgaY/T19/73uxUFKo9eg0zzorXqxB2ZWP/0tn2Pw6cILpdwAuD1xqB3oMKiPcJbv2bbfdRhKXmm9DSKeZ5xpXy9NohRVW0G55Zh1pDkTE5Ji9ww6xcM2Wkr93MVnUeUZU914fvTaXBCEaWQMnmEEBRnU5Rkb6+cvcaymLvMCs0fmWYMl7y6RWoxO1xqWH3VWjF18cEhbk9PZV/uel24eulht5WOidP7t0TK1kb5Sjjy6MmBYdZuvH07kUuiYMrrbaal/5yldOOOEEwz7j2zQosGwIABRwGO0EfNxW3ale8JTjCpHTh6B56NBhTn6eM6eYoKBE7OZ09JbYVxU+85nPOOr9lltuCYZsQA+2aB6awr04IRop/sQTT7RcJ6gmPaTKyG6x7AKTxA844IAwzeSESwmWQUypB2+ApLh6XZ9lly//W5BnKwHr5KxBhFw5A6nB6vJttmmxNgMF0GxYMPONb/SKMgRkjkrOnCikxzQaqS/pcjOAOKMuABoklTYvZI61jGybvgqDqn5oVZpF03xbPFQAP+3czvTgID7LybvPG2+RXXgtL4tfLTcE1u3km5EZaCMbUrrZW5aph+WnzhbU27dYMz463hJprWOpG/YG6Y033hg8ZvjGb7315rNmdVGe9ZZab89LGBV6Syo8X3XVVS15siaQtgGD/PnPf36nnXZiYKwrP+ZR7RjB6HO1iToS57VS4Lizs6h7y9OjTkMKnU8++WRbUNoeqC7fum/rbmOdSN2jlrdKTChwcp5qm+hkSRFw7LHHrrLKKk1niZYJ1kVQIkBpLfnee0fNtv2vix7fgqott4wN5VwoskWnUF1/M+oNvIA157V5N0xokm/6kf3VHUpxyCElF2sSVK2g52KZ3/hjABv/XDKz2ep0IQfCtZYPW10UKowZ0Tx33HFxfUsjV+h0oi3dHEeuPPOxbuVhwy+H/rR0vtk1NQYFiAAgXNio4corrwSat1qs0x1KM1OwIMAB0/zw4Ys899w0Z62XAM3Jk2dvuukbw4YVxoreKq5aztfEJyped9mGh3KG+F4x4+Alzz//fBs7BQVlaIreEkyeB99hkfkMdXV1QSfLeyxQdJvECRc27cV6u05nXRen8bYMjwkW7bMyYcIEfy3qsikL9TN1TCVwGYrIckIKIEBZ/MtQkx1AJGq2pyE9VzZcSicQfQbpG1QS0bx80cMJ49m5h7c+YZew0bq17YqRkX7T1GRqJzzKsquvjvWSOQO2fqed4sFclaE8Z75tRoNTnAps09OyZ5OMtCdhnJsL4aOdIB1Nraf4zThtkf/8vJ559WmTGGyhLyZ6KNqn9Wn1fm/EClxNBEOdWpMvF8QkhLp1QYa1VUdIgCTuYe+JzfNGzBAZ6AhR5PwMDi1F2cyZkydfdt99z7A5zZN639woMN7z4osvxo3RV+bhKAm4YBf++MsXHUTC4rXXXnuLLbYIrGt4q5HbL3IZHrO7F+I/KiMoKP7f30oKFKqEJDB6nBt+9KPY4TbDUACqrLSxu4ydOPgLtkTMPE0md5K71T6HHx5bovPQJ/DC5BpaDAvKULRrZOH35JPRMcfEa4eyh3Goglww1DbgkW/R7PI0Qt/F0bMcsJypbXVTzoAVsFslwwVlotBOfUNv0rfwY2Ux40Kr2RsN9+Zszas3KT1ZistpWnLWLh3NsEpug6M1xtNqAlKdIQYISO64UaZhC1eSmLkvDo6i46JoeHf8PPARCjNp4YW/M3So7HrKljvHMhGhSkuvoJAucGS3seMPN3jcJXwkaAcNITE8KA+TElQCUGV4TCWQt1CnGkhKVskFRKCXdBYzHLRL1cMPN9nBCG9lkQ/I2HPPMpxdRjkNGLkDYutDuv24M+LG3uN8gy3j87c0ZEMBNQ058oDJVqHKxf6bFrHZnKYd+MiqVZ+9U2C74dm2zsourgUtg/j2jSZw6BGhzfqGzyGgpoOG1krgNM2LdskMQQSvmHp0qL/gsnSfzk2xyD/DKokeduAGChYIBXcZOGLvRBjKQ/vmm28GrwzowVs7+Srz4oIo2iGKLGkflhkt/XJaFF04Z87j9ndMP52/17SfIFL7cBKwEICbaldXF3xUKqDUDU49zVhtUcvwmNWWICM10y3gwGBaSEZAZuDGFwR2gOaOl4mdKK3ewQvQyhsDFQZZY4XAJZM69SjDfW/BcCIqWiLN6ITTRPApmu/toybP5eiHt1XZE0+Mzj+/SZzwSI4QxxmB9Lx5FBG9JjT/XmhbnN2ZZ8aq22xnLI1JImam4wURdgwo17x1ddXUIQRPA4hpEWQImtdGwkCTHsBcGLKrJNO5GbTxL3Ez5FXj6HPQgPecMmUKpiydKkF+0qRJzdg0arvdouj0KIpPQ2glnoc2+nEUfSuKnu43BjNdkcZrVQaRjgujCYSb+EoL8IPu0quEQ3fd+G0lT3ryqCS5yhMJlE3zBbw4G5HTgyslrR+cwgLYTaB7aimJU70VOOTrL8c9cMnB4pxz4nXcdQFykS4Vw3YYTBMhlOusZAyrrGpiMy27xv7UBZq1cePitW4ERkNaKJddXbL9fKuyQJPPCn3iySdn+fqYGjktUNe6qLymSZtTg6SXbJr52BKTUHm+ScpFLwIipKGBnG51kHTSGMFSxLsbvPIMZzzh7J1ASRR1dQvmn4yi2OjRO2gGuLwrir4WRTfMdwaTleZLX/oSkwkWEkfJj5LONy3jpqvfXa8++6MpB0Xg4spTdfbsnl9VG7tlVz/kO3Nm7bbb4i04mQvNZH52ADvyyNott8SbwqVcaLMTy/VWjqom2XvvjTfBXGWVuTna0W6LLWp//GPNiYRybGPr0VzF6IdIqsCMcf31tR12aLL9qO1BtfBNN8WblXVC0RbghSNgRW0OYAc5Cr43IcRm12sQtKPIoiuLFCBj0x+m9b4oGhdFlXkNvlmAAv/hoHDwwQfznWJAp9hVKZOEyaBog1QVf6DzmAVaty+jBp4IJ8ItJgRKAJ497YjhGeUNvI+/ZEYMRGCrcTo4awccCgOH68moRctXoZqYTYw8MwbeOSxpCXKxsw/5Hmhht51QrgXAhA9Zydmdd911V1tUdMvvJNY1cZqvvbbx7NlWptcLsDZRHj6cgvmwKGKbmz/qS5hoF0u73rHqcAxizKnWtlyuPX3VQczSTdf5sA9bIIBpTKD1w7kPM12Akw7Q2d2ecxvUk0svjTUeU6cOoZEIDU7B5eBoe1rTNZme8Xfzt00aiz1/yxM3YFKm+V6UTgE6LdBpgX5rgQCRLEa2zQ6LzT3hqTphQo97wPwGzH5rjAIZdRCzQGN1onZaYAFrgYCbaWQMT1Qz/XABq3U71ekgZjut1/m2RQs0SjBB0Gt83iKhZq/nu8zYrFCdZwt4C5T0YF/AW6VTvT5rgUqwss9K10m40wItWqBjhmzRQJ3XnRbotECnBZIW6CBm0hSdi04LdFqg0wItWmChO5+q6MCnFhl1Xr8VW6BPZfCOHrMqkmrwIZr3wbx3VWU6SNP5f/DwNMlZu1djAAAAAElFTkSuQmCC" alt="" />

强行证明一下吼,,,

因为是两排平行的“钉子板”

所以如果一个分枝点想要有超过2个儿子结点

因为在同侧最多有两条边

就一定要往另一边伸至少一条边

这样就因为这条边挡住了一侧(比如说左侧)

那么剩下的边只能往右侧伸展了

那它向另一侧伸的边伸出的子树中的叶子节点一定有一个是最左边的节点

那最左边的节点的路径一定要经过它

所以它就在最左边的节点到最右边的节点的路上

它就是主干不是分枝辣

然后就考虑,我怎么找哪个是杈哪个是主干呐

那就从叶子节点开始,把链减下来,剩下的不是主干就是分杈点

然后就看,如果这个点麻油被减下来的邻居只有一个,说明那它就是分叉点或者主干点的最侧端

然后最后判断一下484所有主干的邻居主干点都小于等于2就好辣!

(最后分享一个傻逼错误,,,给大家提个醒,,,虽然我jio得不会有人和我一样蠢地犯这个错误QAQ

就是,我jio得这题过程中有很多次要算size,所以我就预处理了下sz存了下来

但是,我是一遍算sz一遍dfs

然后这就会导致,在dfs的时候可能会dfs到还麻油算sz的点

就会错误地删掉

就WA了,,,

我说开始错的时候找评测记录怎么一直没找到和我一样WA在第五个点的,,,原来是这个错误太sd辣一般人不会犯呜呜呜,,,

#include<bits/stdc++.h>
using namespace std;
#define ll int
#define il inline
#define rg register
#define rp(i,x,y) for(rg ll i=x;i<=y;++i)
#define my(i,x,y) for(rg ll i=x;i>=y;--i) const ll N=+;
ll n,sz[N],lg[N];
bool del[N];
vector<ll>ed[N]; il ll read()
{
rg char ch=getchar();rg ll x=;rg bool y=;
while(ch!='-' && (ch>'' || ch<''))ch=getchar();
if(ch=='-')ch=getchar(),y=;
while(ch<='' && ch>='')x=(x<<)+(x<<)+(ch^''),ch=getchar();
return y?x:-x;
}
il void dfs(ll nw,ll sn){if(sz[nw]<=){del[nw]=;rp(i,,sz[nw]-)if(ed[nw][i]!=sn)dfs(ed[nw][i],nw);}} int main()
{
n=read();rp(i,,n-){ll x=read(),y=read();ed[x].push_back(y);ed[y].push_back(x);}
rp(i,,n)sz[i]=ed[i].size();rp(i,,n)if(sz[i]==)dfs(i,);
rp(i,,n)rp(j,,sz[i]-)if(del[ed[i][j]])++lg[i];
rp(i,,n)
if(!del[i])
{
ll cnt=;
rp(j,,sz[i]-)if(sz[ed[i][j]]-min(lg[ed[i][j]],)> && (!del[i]))++cnt;
if(cnt>)return printf("No"),;
}
return printf("Yes"),;
} 这儿是代码!

CF573C Bear and Drawing 构造+树论的更多相关文章

  1. E. Bear and Drawing

         E. Bear and Drawing time limit per test 1 second memory limit per test 256 megabytes input stan ...

  2. C#结合Jquery LigerUI Tree插件构造树

    Jquery LigerUI Tree是Jquery LigerUI()的插件之一,使用它可以快速的构建树形菜单.呵呵 废话不说了,直入正题,下面介绍C#结合ligerui 构造树形菜单的两种方法 1 ...

  3. java 根据 根节点及所有子成员 构造树tree

    实体类entity package com.ompa.biz.entity; import java.util.ArrayList; import java.util.List; public cla ...

  4. C# 递归构造树状数据结构(泛型),如何构造?如何查询?

    十年河东,十年河西,莫欺少年穷. 学无止境,精益求精 难得有清闲的一上午,索性写篇博客. 首先,我们需要准备一张表,如下范例: create table TreeTable ( TreeId ) no ...

  5. 简洁常用权限系统的设计与实现(四):不维护level,用递归方式构造树

    第三篇中,我们通过维护节点的深度level,通过迭代所有的节点,只需要一次,就构造了树.  本篇,换一种方式. 好处是:不维护节点的深度level,增加和修改节点时,也不用维护.递归实现,代码比较清晰 ...

  6. 简洁常用权限系统的设计与实现(五):不维护节点的深度level,手动计算level,构造树

     这种方式,与第三篇中介绍的类似.不同的是,数据库中不存储节点的深度level,增加和修改时,也不用维护.而是,在程序中,实时去计算的. 至于后面的,按照level升序排序,再迭代所有的节点构造树,与 ...

  7. Object-Widgets-Quick 构造树

    Object Tree 当以某个QObject为父类创建一个QObject时, 它会被添加到该父类的children列表中. 析构时, QObjet 会首先检查自己的children, 依次析构, 然 ...

  8. 根据 中序遍历 和 后序遍历构造树(Presentation)(C++)

    好不容易又到周五了,周末终于可以休息休息了.写这一篇随笔只是心血来潮,下午问了一位朋友PAT考的如何,顺便看一下他考的试题,里面有最后一道题,是关于给出中序遍历和后序遍历然后求一个层次遍历.等等,我找 ...

  9. 【CF573D】Bear and Cavalry 线段树

    [CF573D]Bear and Cavalry 题意:有n个人和n匹马,第i个人对应第i匹马.第i个人能力值ai,第i匹马能力值bi,第i个人骑第j匹马的总能力值为ai*bj,整个军队的总能力值为$ ...

随机推荐

  1. ajax做省市联动

    原理: 当select.jsp页面打开时,向服务器发送异步请求,得到所有省份的名称(文本数据).然后使用每个省份名称创建<option>,添加到<select name=”provi ...

  2. 国内CDN加速现状

    什么是CDN CDN的全称是Content Delivery Network,即内容分发网络.是位于网络层与应用层之间的网络应用,其目的是通过在现有的Internet中增加一层新的网络架构,将网站的内 ...

  3. N76E003之ISP

    Flash存储器支持硬件编程和应用编程(IAP).如果产品在研发阶段或产品需要更新软固件时,硬件编程就显得不太方便,采用在系统编程(ISP)方式,可使这一过程变得方便.执行ISP不需要将控制器从系统板 ...

  4. React Native(四)——顶部以及底部导航栏实现方式

    效果图: 一步一步慢慢来: 其实刚入手做app的时候,就应该做出简单的顶部以及底部导航栏.无奈又在忙其他事情,导致这些现在才整理出来. 1.顶部导航栏:react-native-scrollable- ...

  5. Python学习(20):Python函数(4):关于函数式编程的内建函数

    转自http://www.cnblogs.com/BeginMan/p/3178103.html 一.关于函数式编程的内建函数 apply()逐渐被舍弃,这里不讨论 1.filter() #filte ...

  6. <转>13个实用的Linux find命令示例

    注:本文摘自青崖白鹿,翻译的妈咪,我找到了! -- 15个实用的Linux find命令示例, 感谢翻译的好文. 除了在一个目录结构下查找文件这种基本的操作,你还可以用find命令实现一些实用的操作, ...

  7. 【大数据系列】HDFS安全模式

    一.什么是安全模式 安全模式时HDFS所处的一种特殊状态,在这种状态下,文件系统只接受读数据请求,而不接受删除.修改等变更请求.在NameNode主节点启动时,HDFS首先进入安全模式,DataNod ...

  8. XSS 跨站脚本攻击(Cross Site Scripting)

    xss表示Cross Site Scripting(跨站脚本攻击),它与SQL注入攻击类似,SQL注入攻击中以SQL语句作为用户输入,从而达到查询/修改/删除数据的目的,而在xss攻击中,通过插入恶意 ...

  9. GitStack系统RCE漏洞学习

    漏洞简介 漏洞简情 漏洞程序 GitStack 影响版本 <=2.3.10 漏洞类型 RCE 漏洞评价 高危 漏洞编号 CVE-2018-5955 漏洞程序介绍 GitStack是一款基于Pyt ...

  10. linux中守护进程启停工具start-stop-daemon

    1.功能作用 启动和停止系统守护程序 2.位置 /sbin/start-stop-daemon 3.主要参数 Commands: -S|--start -- <argument> ... ...