logistic回归和softmax回归
logistic:二分类
softmax:多分类
logistic回归
在 logistic 回归中,我们的训练集由
个已标记的样本构成:
。由于 logistic 回归是针对二分类问题的,因此类标记
。
假设函数(hypothesis function): 
代价函数(损失函数):
我们的目标是训练模型参数
,使其能够最小化代价函数。
假设函数就相当于我们在线性回归中要拟合的直线函数。
softmax回归
在 softmax回归中,我们的训练集由
个已标记的样本构成:
。由于softmax回归是针对多分类问题(相对于 logistic 回归针对二分类问题),因此类标记
可以取
个不同的值(而不是 2 个)。我们有
。
对于给定的测试输入
,我们想用假设函数针对每一个类别j估算出概率值
。也就是说,我们想估计
的每一种分类结果出现的概率。因此,我们的假设函数将要输出一个
维的向量(向量元素的和为1)来表示这
个估计的概率值。 具体地说,我们的假设函数
形式如下:
- 假设函数:

- 其中
是模型的参数。请注意
这一项对概率分布进行归一化,使得所有概率之和为 1 。 -
为了方便起见,我们同样使用符号
来表示全部的模型参数。在实现Softmax回归时,将
用一个
的矩阵来表示会很方便,该矩阵是将
按行罗列起来得到的,如下所示:
也就是说
表示的是x属于不同类别的概率组成的向量。
- 代价函数:

是示性函数,其取值规则为
值为真的表达式
值得注意的是,logistic回归代价函数是softmax代价函数的特殊情况。因此,logistic回归代价函数可以改为:

- 一点个人理解:
-
为什么二分类中参数只有一个
,而k分类中参数却有k个。 -
其实二分类中的
是y=1情况下的参数,而y=0情况下其实未给出参数,因为y=0的假设函数值可以通过1-(y=1的假设函数值)得到。同理,k分类中参数其实只需要k-1个参数就可以了,多余的一个参数是冗余的。
具体冗余参数有什么负面影响,参考Softmax回归 http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92
logistic回归和softmax回归的更多相关文章
- 线性回归、Logistic回归、Softmax回归
线性回归(Linear Regression) 什么是回归? 给定一些数据,{(x1,y1),(x2,y2)…(xn,yn) },x的值来预测y的值,通常地,y的值是连续的就是回归问题,y的值是离散的 ...
- 1.线性回归、Logistic回归、Softmax回归
本次回归章节的思维导图版总结已经总结完毕,但自我感觉不甚理想.不知道是模型太简单还是由于自己本身的原因,总结出来的东西感觉很少,好像知识点都覆盖上了,但乍一看,好像又什么都没有.不管怎样,算是一次尝试 ...
- Machine Learning 学习笔记 (3) —— 泊松回归与Softmax回归
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson ...
- 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...
- 机器学习(三)—线性回归、逻辑回归、Softmax回归 的区别
1.什么是回归? 是一种监督学习方式,用于预测输入变量和输出变量之间的关系,等价于函数拟合,选择一条函数曲线使其更好的拟合已知数据且更好的预测未知数据. 2.线性回归 于一个一般的线性模型而言,其 ...
- DNN:逻辑回归与 SoftMax 回归方法
UFLDL Tutorial 翻译系列:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 第四章:SoftMax回归 简介: ...
- 广义线性模型------逻辑回归和softmax回归
1.广义线性模型 2.逻辑回归 3.softmax回归
- DeepLearning之路(二)SoftMax回归
Softmax回归 1. softmax回归模型 softmax回归模型是logistic回归模型在多分类问题上的扩展(logistic回归解决的是二分类问题). 对于训练集,有. 对于给定的测试 ...
- softmax回归---sigmoid(1)
介绍softmax之前先讲讲sigmoid: 逻辑回归模型常用的函数:sigmoid函数(用来做二分类) 表达式:f(x)=L/(1+exp-k(x-x0)) 其图像: 本质:将一个真值映射到(0,1 ...
随机推荐
- SVN里直接把本地目录纳入管理
如果本地有个已有的目录,要直接纳入SVN管理,怎么办呢?直接在Repository Browser里面 Add folder,但这样虽然把目录加到SVN,但本地目录没有纳入管理,你还要重新又下到本地才 ...
- Java中子类是否可以继承父类的static变量和方法而呈现多态特性
静态方法 通常,在一个类中定义一个方法为static,那就是说,无需本类的对象即可调用此方法,关于static方法,声明为static的方法有以下几条限制: 它们仅能调用其他的static 方法. 它 ...
- CH0102 64位整数乘法 数论
正解:数论/一个神仙想法 解题报告: 先放传送门qwq 两种方法,都还挺妙的就都写了qwq 第一种是快速幂 把b用二进制表示成,ck*2k+ck-1*2k-1+...+c0*20 然后就可以表示成,a ...
- 订阅号助手App发布 手机也能管理公众号了
盼着许久的微信订阅号助手app终于发布了!“ 微信团队发布「订阅号助手」App,支持公众号运营者在手机上发表内容.查看和回复消息.管理已关注用户和帐号.暂时只支持iOS平台,Android平台敬请期待 ...
- [py][mx]django使用class写views-免去判断方法的烦恼
修改views使用class模式 类模式写views - 免去了函数模式的判断的烦恼 users/views.py from django.views.generic import View clas ...
- [LeetCode] 197. Rising Temperature_Easy tag: SQL
Given a Weather table, write a SQL query to find all dates' Ids with higher temperature compared to ...
- HTTP请求返回状态码详解
当用户试图通过 HTTP 访问一台正在运行 Internet 信息服务 (IIS) 的服务器上的内容时,IIS 返回一个表示该请求的状态的数字代码.状态代码可以指明具体请求是否已成功,还可以揭示请求失 ...
- tfs使用流程
1.用邮箱注册个微软账号,如zhangsan@outlook.com等邮箱 2.管理员会添加此用户zhangsan@outlook.com 3.打开vs,team-tfs-connect to ser ...
- LeetCode-EvaluteReversePolishNotation
题目: Evaluate the value of an arithmetic expression in Reverse Polish Notation. Valid operators are + ...
- SV中的数据类型
Verilog-1995中规定的数据类型有:变量(reg), 线网(wire), 32位有符号数(integer), 64位无符号数(time), 浮点数(real). SV扩展了reg类型为logi ...
