SPOJ - INTSUB 数学
题目链接:点击传送
INTSUB - Interesting Subset
You are given a set X = {1, 2, 3, 4, … , 2n-1, 2n} where n is an integer. You have to find the number of interesting subsets of this set X.
A subset of set X is interesting if there are at least two integers a & b such that b is a multiple of a, i.e. remainder of b divides by a is zero and a is the smallest number in the set.
Input
The input file contains multiple test cases. The first line of the input is an integer T(<=30) denoting the number of test cases. Each of the next T lines contains an integer 'n' where 1<=n<=1000.
Output
For each test case, you have to output as the format below:
Case X: Y
Here X is the test case number and Y is the number of subsets. As the number Y can be very large, you need to output the number modulo 1000000007.
Example
Input:
3
1
2
3 Output:
Case 1: 1
Case 2: 9
Case 3: 47
题意:给你2*n个数,你最小需要选两个,使得这个子集中含有最小值的倍数;
思路:枚举最小值,对于其倍数最小取一个,其余随意取与不取;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=1e6+,inf=;
const ll INF=1e18+,mod=1e9+;
ll qpow(ll a,ll b,ll c)
{
ll ans=;
while(b)
{
if(b&)ans=(ans*a)%c;
b>>=;
a=(a*a)%c;
}
return ans;
}
int main()
{
int T,cas=;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
ll ans=;
for(int i=;i<=n;i++)
{
int p=(*n-i);
int b=((*n)/i-);
ans=(ans+(qpow(,p-b,mod)*(qpow(,b,mod)+(mod-))%mod)%mod)%mod;
}
printf("Case %d: %lld\n",cas++,ans);
}
return ;
}
Interesting Subset
SPOJ - INTSUB 数学的更多相关文章
- SPOJ INTSUB - Interesting Subset(数学)
http://www.spoj.com/problems/INTSUB/en/ 题意:给定一个集合,该集合由1,2,3....2n组成,n是一个整数.问该集合中有趣子集的数目,答案mod1e9+7. ...
- SPOJ FAVDICE 数学期望
题目大意: 一个有n面的色子抛掷多少次能使所有面都能被抛到过,求期望值 总面数为n,当已经抛到过 i 个不同面时,我们抛出下一个不同面的概率为 (n-i)/n,那么抛的次数为 n/(n-i) 将所有抛 ...
- SPOJ:NPC2016A(数学)
http://www.spoj.com/problems/NPC2016A/en/ 题意:在一个n*n的平面里面,初始在(x,y)需要碰到每条边一次,然后返回(x,y),问最短路径是多长. 思路:像样 ...
- SPOJ Favorite Dice(数学期望)
BuggyD loves to carry his favorite die around. Perhaps you wonder why it's his favorite? Well, his d ...
- SPOJ:Robot(数学期望)
There is a robot on the 2D plane. Robot initially standing on the position (0, 0). Robot can make a ...
- SPOJ:OR(位运算&数学期望)
Given an array of N integers A1, A2, A3…AN. If you randomly choose two indexes i ,j such that 1 ≤ i ...
- SPOJ SUMPRO(数学)
题意: 给出一个数N,问所有满足n/x=y(此处为整除)的所有x*y的总和是多少.对答案mod(1e9+7). 1 <= T <= 500. 1 <= N <= 1e9. 分析 ...
- 杜教筛进阶+洲阁筛讲解+SPOJ divcnt3
Part 1:杜教筛进阶在了解了杜教筛基本应用,如$\sum_{i=1}^n\varphi(i)$的求法后,我们看一些杜教筛较难的应用.求$\sum_{i=1}^n\varphi(i)*i$考虑把它与 ...
- SPOJ 74. Divisor Summation 分解数字的因子
本题有两个难点: 1 大量的数据输入.没处理好就超时 - 这里使用buffer解决 2 因子分解的算法 a)暴力法超时 b)使用sieve(筛子),只是当中的算法逻辑也挺不easy搞对的. 数值N因子 ...
随机推荐
- No message body writer has been found for class com.alibaba.fastjson.JSONObject, ContentType: */*
1:当使用 cxf 发布服务时,要求返回值类型为xml,或者json等 @Path("/searchProductByText") @GET @Produces({"ap ...
- tomcat访问
1:html页面或者需要访问的对象需要放置到webapps/ROOT下面既可以 http://localhost:8080/直接访问 2:
- SVN出现xcrun: error: invalid active developer path(Mac)
Mac升级了系统,配置PHPStorm的SVN,出现如下错误: 具体提示的内容是:xcrun: error: invalid active developer path (/Library/Devel ...
- 你知道Windows和WordPress上帝模式吗?
一.Windows 上帝模式 这个玩意出来很久很久了,估计不用多说,知道的同学还是挺多的,不知道的也只要百度一下,你就知道了. 方法很简单,在 Windows 系统任何地方新建一个文件夹,如下命名即可 ...
- 如何调用另一个python文件中的代码
模块的搜索路径 模块的搜索路径都放在了sys.path列表中,如果缺省的sys.path中没有含有自己的模块或包的路径,可以动态的加入(sys.path.apend)即可.下面是sys.path在Wi ...
- 使用gunicorn部署Flask项目
[*] 本文出处:http://b1u3buf4.xyz/ [*] 本文作者:B1u3Buf4 [*] 本文授权:禁止转载 从自己的博客移动过来. gunicorn是一个python Wsgi的WEB ...
- js五星好评2
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 定时器事件QtimerEvent 随机数 qrand Qtimer定时器
QTimerEvent类:定时器事件.QObject的子类都可使用 int QObject::startTimer(int interval)[参数:毫秒][返回值:定时器整型编号]来开启一个定时器 ...
- vs计算代码行数
1.用vs打开程序 2.编辑——查找——在文件中查找 3.查找内容^b*[^:b#/]+.*$ 应用正则表达式,在整个解决方案中,文件类型空 4.查找全部,仔细盯着右下角数字,查找完毕后会自动消失 ...
- Filter—过滤器
过滤器的作用是什么? 1.拦截传入的请求和传出的响应,能拿到请求和响应中的数据 2.监视,修改,或处理正在客户端和服务器之间交换的数据流 3.利用过滤器的执行时机,实现Web程序的预处理,和后期的处 ...