HDU 1890 - Robotic Sort - [splay][区间反转+删除根节点]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1890
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
In this task, you are to write software for a robot that handles samples in such a laboratory. Imagine there are material samples lined up on a running belt. The samples have different heights, which may cause troubles to the next processing unit. To eliminate such troubles, we need to sort the samples by their height into the ascending order.
Reordering is done by a mechanical robot arm, which is able to pick up any number of consecutive samples and turn them round, such that their mutual order is reversed. In other words, one robot operation can reverse the order of samples on positions between A and B.
A possible way to sort the samples is to find the position of the smallest one (P1) and reverse the order between positions 1 and P1, which causes the smallest sample to become first. Then we find the second one on position P and reverse the order between 2 and P2. Then the third sample is located etc.
The picture shows a simple example of 6 samples. The smallest one is on the 4th position, therefore, the robot arm reverses the first 4 samples. The second smallest sample is the last one, so the next robot operation will reverse the order of five samples on positions 2–6. The third step will be to reverse the samples 3–4, etc.
Your task is to find the correct sequence of reversal operations that will sort the samples using the above algorithm. If there are more samples with the same height, their mutual order must be preserved: the one that was given first in the initial order must be placed before the others in the final order too.
The last scenario is followed by a line containing zero.
Each Pi must be an integer (1 ≤ Pi ≤ N ) giving the position of the i-th sample just before the i-th reversal operation.
Note that if a sample is already on its correct position Pi , you should output the number Pi anyway, indicating that the “interval between Pi and Pi ” (a single sample) should be reversed.
题意:
给出一个n,给出n个样品的高度,
给出一种根据高度排序的算法,其第 i 次操作:找到第 i 小的那个数的位置为Pi,将整个区间[i,Pi]反转,这样一来第 i 小的数就在位置 i 上;从 i 等于 1 到 n 循环这样的操作。
现在要求你给出每次操作的Pi。
题解:
伸展树1~n建树,把每个节点key值等于节点的编号(即key[x] = x),同时使得中序遍历伸展树得到的序列为1~n,
以题目中两个样例为例,建成的树应为如下图:
(注意,图中节点内的数字,既是节点编号,也是key值,即key[3] = 3,key[1] = 1,key[5] = 5……)
我们此时的伸展树维护的是n个样品的编号(编号为1~n);
将n个样品按输入顺序编号,再按照first高度second编号进行升序排序,那么新的顺序,就是题目中所描述的排序算法中的每次操作的顺序,
这样,按新的顺序依次枚举n个样品,对于第 i 个样品,其编号为sample[i].id,
我们此时就要去伸展树中寻找某个节点x,其key[x] = sample[i].id;而我们要求的Pi,就是比这个节点小的节点个数加1;
根据上面反复提到的,key[x] = x,所以我们其实就是把节点x = sample[i].id伸展到根,然后求其左子树内节点个数,再加1,
同时,因为需要区间翻转,所以我们可以翻转左子树,并且删除根节点,相当于翻转了[i,Pi],
由于我们不断的删除节点,因此实际答案就应该是左子树内节点个数 + 1 + (i - 1)。
AC代码:
#include<bits/stdc++.h>
#define Key_value ch[ch[root][1]][0]
using namespace std;
const int maxn=1e5+; int n;
struct Sample
{
int h;
int id;
}sample[maxn];
bool cmp(Sample a,Sample b)
{
if(a.h==b.h) return a.id<b.id;
else return a.h<b.h;
} /******************************** splay - st ********************************/
int root,nodecnt;
int par[maxn],ch[maxn][];
int key[maxn],size[maxn];
bool rev[maxn];
void NewNode(int &x,int p,int k)
{
x=k;
par[x]=p;
ch[x][]=ch[x][]=;
key[x]=k;
size[x]=;
rev[x]=;
}
void Update_Rev(int x)
{
if(x==) return;
rev[x]^=1;
}
void Pushup(int x)
{
size[x]=size[ch[x][]]+size[ch[x][]]+;
}
void Pushdown(int x)
{
if(rev[x])
{
swap(ch[x][],ch[x][]);
Update_Rev(ch[x][0]);
Update_Rev(ch[x][1]);
rev[x]=;
}
}
void Rotate(int x,int type) //旋转,0为左旋zag,1为右旋zig
{
int y=par[x];
Pushdown(y); Pushdown(x); //先把y的标记向下传递,再把x的标记往下传递
ch[y][!type]=ch[x][type]; par[ch[x][type]]=y;
if(par[y]) ch[par[y]][(ch[par[y]][]==y)]=x;
par[x]=par[y];
ch[x][type]=y; par[y]=x;
Pushup(y); Pushup(x);
}
void Splay(int x,int goal)
{
Pushdown(x);
while(par[x]!=goal)
{
if(par[par[x]]==goal)
{
Pushdown(par[x]); Pushdown(x);
Rotate(x,ch[par[x]][]==x); //左孩子zig,有孩子zag
}
else
{
Pushdown(par[par[x]]); Pushdown(par[x]); Pushdown(x);
int y=par[x];
int type=(ch[par[y]][]==y); //type=0,y是右孩子;type=1,y是左孩子
if(ch[y][type]==x)
{
Rotate(x,!type);
Rotate(x,type);
}
else
{
Rotate(y,type);
Rotate(x,type);
}
}
}
if(goal==) root=x;
}
int Get_Kth(int x,int k) //得到第k个节点
{
Pushdown(x);
int t=size[ch[x][]]+;
if(t==k) return x;
if(t>k) return Get_Kth(ch[x][],k);
else return Get_Kth(ch[x][],k-t);
}
int Get_Min(int x)
{
Pushdown(x);
while(ch[x][])
{
x=ch[x][];
Pushdown(x);
}
return x;
}
int Get_Max(int x)
{
Pushdown(x);
while(ch[x][])
{
x=ch[x][];
Pushdown(x);
}
return x;
}
void Build(int &x,int l,int r,int par)
{
if(l>r) return;
int mid=(l+r)/;
NewNode(x,par,mid);
Build(ch[x][],l,mid-,x);
Build(ch[x][],mid+,r,x);
Pushup(x);
}
void Init()
{
root=nodecnt=;
ch[root][]=ch[root][]=size[root]=key[root]=par[root]=rev[root]=;
Build(root,,n,);
}
void Del()
{
if(ch[root][]== && ch[root][]==) root=;
else if(ch[root][]==)
{
par[ch[root][]]=;
root=ch[root][];
}
else if(ch[root][]==)
{
par[ch[root][]]=;
root=ch[root][];
}
else
{
int pre=Get_Max(ch[root][]);
int nxt=Get_Min(ch[root][]);
Splay(pre,); Splay(nxt,root);
par[Key_value]=;
Key_value=;
Pushup(ch[root][]);
Pushup(root);
}
}
/******************************** splay - ed ********************************/ int main()
{
while(scanf("%d",&n) && n!=)
{
Init();
for(int i=;i<=n;i++)
{
scanf("%d",&sample[i].h);
sample[i].id=i;
}
sort(sample+,sample+n+,cmp); for(int i=;i<n;i++)
{
Splay(sample[i].id,);
printf("%d ",i+size[ch[root][]]);
Update_Rev(ch[root][]);
Del();
}
printf("%d\n",n);
}
}
HDU 1890 - Robotic Sort - [splay][区间反转+删除根节点]的更多相关文章
- hdu 1890 Robotic Sort(splay 区间反转+删点)
题目链接:hdu 1890 Robotic Sort 题意: 给你n个数,每次找到第i小的数的位置,然后输出这个位置,然后将这个位置前面的数翻转一下,然后删除这个数,这样执行n次. 题解: 典型的sp ...
- HDU1890 Robotic Sort Splay tree反转,删除
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1890 题目中涉及数的反转和删除操作,需要用Splay tree来实现.首先对数列排序,得到每个数在数列 ...
- HDU 1890 Robotic Sort | Splay
Robotic Sort Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) [Pr ...
- HDU 1890 Robotic Sort (splay tree)
Robotic Sort Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- 数据结构(Splay平衡树):HDU 1890 Robotic Sort
Robotic Sort Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- hdu1890 Robotic Sort (splay+区间翻转单点更新)
Problem Description Somewhere deep in the Czech Technical University buildings, there are laboratori ...
- HDU 1890 Robotic Sort(splay)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1890 [题意] 给定一个序列,每次将i..P[i]反转,然后输出P[i],P[i]定义为当前数字i ...
- hdu 1890 Robotic Sort
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1890 如下: #include<cstdio> #include<cstdlib&g ...
- 算法模板——splay区间反转 2
实现功能:同splay区间反转 1(基于BZOJ3223 文艺平衡树) 这次改用了一个全新的模板(HansBug:琢磨了我大半天啊有木有),大大简化了程序,同时对于splay的功能也有所完善 这里面没 ...
随机推荐
- Oauth2.0(一):为什么需要 Oauth2.0 协议?
假设有两家互联网企业 A 和 B,其中 B 是一家提供相片云存储的公司.即 B 的用户可以把相片上传到 B 网站上长期保存,然后可以在不同的设备上查看.某一天,A 和 B 谈成了一项合作:希望 B 用 ...
- Log4net用法(App.config配置)
配置文件 <configSections> <section name="log4net" type="log4net.Config.Log4NetCo ...
- [AX2012]代码更改默认财务维度
在前文(http://www.cnblogs.com/duanshuiliu/p/3243048.html)最后演示了如何使用代码更改默认财务维度,那段代码模拟了创建各数据表记录的过程,实际上AX提供 ...
- css媒体查询移动优先和pc优先
移动优先,默认你是用手机浏览该网页的,当你用pc浏览时,就会以min-width进行递增式媒体查询 <!DOCTYPE html> <html lang="en" ...
- Websphere安装配置与项目部署
0x01 下载安装 1.在IBM官网下载安装包 打开下载地址,需注册账户,登录后,选择Windows 64-bit下载 2.解压缩,运行install.exe文件 3.输入刚才注册的用户名和密码,并输 ...
- drawCall_01
在屏幕上渲染物体,引擎需要发出一个绘制调用来访问图形API(iOS系统中为OpenGL ES).每个绘制调用需要进行大量的工作来访问图形API,从而导致了CPU方面显著的性能开销. Unity在运 ...
- js中的假值
undefined null 0 NaN 空字符串
- Linux怎样创建FTP服务器--修改用户默认目录
在创建FTP服务器之有先命令: ps -ef |grep vsftpd 查一下系统有没有安装vsftpd这个服务器,如果出现如下图所示的界面说明没有安装. 然后再执行:yum install ...
- 【vue学习】vue中怎么引用laydate.js日期插件
此贴意在解决一个妹子的问题 https://q.cnblogs.com/q/101462 下载js包 http://www.layui.com/laydate/ 将laydate下载的包解压放入sta ...
- 【技术分享会】 iOS开发简述
前言 Objective-C(简称OC)也是面向对象的编程语言,运用的许多面向对象的编程思想和C# . Java .C++等变成语言都是相通的: 本次技术讲座主要讲一些设计模式.设计思想等计算机语言通 ...