3D物体识别的如果检验
3D物体识别的如果验证
这次目的在于解释怎样做3D物体识别通过验证模型如果在聚类里面。在描写叙述器匹配后,这次我们将执行某个相关组算法在PCL里面为了聚类点对点相关性的集合,决定如果物体在场景里面的实例。
在这个假定里面。全局如果验证算法将被用来降低错误的数量。
代码:
在開始之前,你应该从Correspondence Grouping里面下载文件。
以下是代码
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2014-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/ #include <pcl/io/pcd_io.h>
#include <pcl/point_cloud.h>
#include <pcl/correspondence.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/features/shot_omp.h>
#include <pcl/features/board.h>
#include <pcl/filters/uniform_sampling.h>
#include <pcl/recognition/cg/hough_3d.h>
#include <pcl/recognition/cg/geometric_consistency.h>
#include <pcl/recognition/hv/hv_go.h>
#include <pcl/registration/icp.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/kdtree/impl/kdtree_flann.hpp>
#include <pcl/common/transforms.h>
#include <pcl/console/parse.h> typedef pcl::PointXYZRGBA PointType;
typedef pcl::Normal NormalType;
typedef pcl::ReferenceFrame RFType;
typedef pcl::SHOT352 DescriptorType; struct CloudStyle
{
double r;
double g;
double b;
double size; CloudStyle (double r,
double g,
double b,
double size) :
r (r),
g (g),
b (b),
size (size)
{
}
}; CloudStyle style_white (255.0, 255.0, 255.0, 4.0);
CloudStyle style_red (255.0, 0.0, 0.0, 3.0);
CloudStyle style_green (0.0, 255.0, 0.0, 5.0);
CloudStyle style_cyan (93.0, 200.0, 217.0, 4.0);
CloudStyle style_violet (255.0, 0.0, 255.0, 8.0); std::string model_filename_;
std::string scene_filename_; //Algorithm params
bool show_keypoints_ (false);
bool use_hough_ (true);
float model_ss_ (0.02f);
float scene_ss_ (0.02f);
float rf_rad_ (0.015f);
float descr_rad_ (0.02f);
float cg_size_ (0.01f);
float cg_thresh_ (5.0f);
int icp_max_iter_ (5);
float icp_corr_distance_ (0.005f);
float hv_clutter_reg_ (5.0f);
float hv_inlier_th_ (0.005f);
float hv_occlusion_th_ (0.01f);
float hv_rad_clutter_ (0.03f);
float hv_regularizer_ (3.0f);
float hv_rad_normals_ (0.05);
bool hv_detect_clutter_ (true); /**
* Prints out Help message
* @param filename Runnable App Name
*/
void
showHelp (char *filename)
{
std::cout << std::endl;
std::cout << "***************************************************************************" << std::endl;
std::cout << "* *" << std::endl;
std::cout << "* Global Hypothese Verification Tutorial - Usage Guide *" << std::endl;
std::cout << "* *" << std::endl;
std::cout << "***************************************************************************" << std::endl << std::endl;
std::cout << "Usage: " << filename << " model_filename.pcd scene_filename.pcd [Options]" << std::endl << std::endl;
std::cout << "Options:" << std::endl;
std::cout << " -h: Show this help." << std::endl;
std::cout << " -k: Show keypoints." << std::endl;
std::cout << " --algorithm (Hough|GC): Clustering algorithm used (default Hough)." << std::endl;
std::cout << " --model_ss val: Model uniform sampling radius (default " << model_ss_ << ")" << std::endl;
std::cout << " --scene_ss val: Scene uniform sampling radius (default " << scene_ss_ << ")" << std::endl;
std::cout << " --rf_rad val: Reference frame radius (default " << rf_rad_ << ")" << std::endl;
std::cout << " --descr_rad val: Descriptor radius (default " << descr_rad_ << ")" << std::endl;
std::cout << " --cg_size val: Cluster size (default " << cg_size_ << ")" << std::endl;
std::cout << " --cg_thresh val: Clustering threshold (default " << cg_thresh_ << ")" << std::endl << std::endl;
std::cout << " --icp_max_iter val: ICP max iterations number (default " << icp_max_iter_ << ")" << std::endl;
std::cout << " --icp_corr_distance val: ICP correspondence distance (default " << icp_corr_distance_ << ")" << std::endl << std::endl;
std::cout << " --hv_clutter_reg val: Clutter Regularizer (default " << hv_clutter_reg_ << ")" << std::endl;
std::cout << " --hv_inlier_th val: Inlier threshold (default " << hv_inlier_th_ << ")" << std::endl;
std::cout << " --hv_occlusion_th val: Occlusion threshold (default " << hv_occlusion_th_ << ")" << std::endl;
std::cout << " --hv_rad_clutter val: Clutter radius (default " << hv_rad_clutter_ << ")" << std::endl;
std::cout << " --hv_regularizer val: Regularizer value (default " << hv_regularizer_ << ")" << std::endl;
std::cout << " --hv_rad_normals val: Normals radius (default " << hv_rad_normals_ << ")" << std::endl;
std::cout << " --hv_detect_clutter val: TRUE if clutter detect enabled (default " << hv_detect_clutter_ << ")" << std::endl << std::endl;
} /**
* Parses Command Line Arguments (Argc,Argv)
* @param argc
* @param argv
*/
void
parseCommandLine (int argc,
char *argv[])
{
//Show help
if (pcl::console::find_switch (argc, argv, "-h"))
{
showHelp (argv[0]);
exit (0);
} //Model & scene filenames
std::vector<int> filenames;
filenames = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
if (filenames.size () != 2)
{
std::cout << "Filenames missing.\n";
showHelp (argv[0]);
exit (-1);
} model_filename_ = argv[filenames[0]];
scene_filename_ = argv[filenames[1]]; //Program behavior
if (pcl::console::find_switch (argc, argv, "-k"))
{
show_keypoints_ = true;
} std::string used_algorithm;
if (pcl::console::parse_argument (argc, argv, "--algorithm", used_algorithm) != -1)
{
if (used_algorithm.compare ("Hough") == 0)
{
use_hough_ = true;
}
else if (used_algorithm.compare ("GC") == 0)
{
use_hough_ = false;
}
else
{
std::cout << "Wrong algorithm name.\n";
showHelp (argv[0]);
exit (-1);
}
} //General parameters
pcl::console::parse_argument (argc, argv, "--model_ss", model_ss_);
pcl::console::parse_argument (argc, argv, "--scene_ss", scene_ss_);
pcl::console::parse_argument (argc, argv, "--rf_rad", rf_rad_);
pcl::console::parse_argument (argc, argv, "--descr_rad", descr_rad_);
pcl::console::parse_argument (argc, argv, "--cg_size", cg_size_);
pcl::console::parse_argument (argc, argv, "--cg_thresh", cg_thresh_);
pcl::console::parse_argument (argc, argv, "--icp_max_iter", icp_max_iter_);
pcl::console::parse_argument (argc, argv, "--icp_corr_distance", icp_corr_distance_);
pcl::console::parse_argument (argc, argv, "--hv_clutter_reg", hv_clutter_reg_);
pcl::console::parse_argument (argc, argv, "--hv_inlier_th", hv_inlier_th_);
pcl::console::parse_argument (argc, argv, "--hv_occlusion_th", hv_occlusion_th_);
pcl::console::parse_argument (argc, argv, "--hv_rad_clutter", hv_rad_clutter_);
pcl::console::parse_argument (argc, argv, "--hv_regularizer", hv_regularizer_);
pcl::console::parse_argument (argc, argv, "--hv_rad_normals", hv_rad_normals_);
pcl::console::parse_argument (argc, argv, "--hv_detect_clutter", hv_detect_clutter_);
} int
main (int argc,
char *argv[])
{
parseCommandLine (argc, argv); pcl::PointCloud<PointType>::Ptr model (new pcl::PointCloud<PointType> ());
pcl::PointCloud<PointType>::Ptr model_keypoints (new pcl::PointCloud<PointType> ());
pcl::PointCloud<PointType>::Ptr scene (new pcl::PointCloud<PointType> ());
pcl::PointCloud<PointType>::Ptr scene_keypoints (new pcl::PointCloud<PointType> ());
pcl::PointCloud<NormalType>::Ptr model_normals (new pcl::PointCloud<NormalType> ());
pcl::PointCloud<NormalType>::Ptr scene_normals (new pcl::PointCloud<NormalType> ());
pcl::PointCloud<DescriptorType>::Ptr model_descriptors (new pcl::PointCloud<DescriptorType> ());
pcl::PointCloud<DescriptorType>::Ptr scene_descriptors (new pcl::PointCloud<DescriptorType> ()); /**
* Load Clouds
*/
if (pcl::io::loadPCDFile (model_filename_, *model) < 0)
{
std::cout << "Error loading model cloud." << std::endl;
showHelp (argv[0]);
return (-1);
}
if (pcl::io::loadPCDFile (scene_filename_, *scene) < 0)
{
std::cout << "Error loading scene cloud." << std::endl;
showHelp (argv[0]);
return (-1);
} /**
* Compute Normals
*/
pcl::NormalEstimationOMP<PointType, NormalType> norm_est;
norm_est.setKSearch (10);
norm_est.setInputCloud (model);
norm_est.compute (*model_normals); norm_est.setInputCloud (scene);
norm_est.compute (*scene_normals); /**
* Downsample Clouds to Extract keypoints
*/
pcl::UniformSampling<PointType> uniform_sampling;
uniform_sampling.setInputCloud (model);
uniform_sampling.setRadiusSearch (model_ss_);
uniform_sampling.filter (*model_keypoints);
std::cout << "Model total points: " << model->size () << "; Selected Keypoints: " << model_keypoints->size () << std::endl; uniform_sampling.setInputCloud (scene);
uniform_sampling.setRadiusSearch (scene_ss_);
uniform_sampling.filter (*scene_keypoints);
std::cout << "Scene total points: " << scene->size () << "; Selected Keypoints: " << scene_keypoints->size () << std::endl; /**
* Compute Descriptor for keypoints
*/
pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est;
descr_est.setRadiusSearch (descr_rad_); descr_est.setInputCloud (model_keypoints);
descr_est.setInputNormals (model_normals);
descr_est.setSearchSurface (model);
descr_est.compute (*model_descriptors); descr_est.setInputCloud (scene_keypoints);
descr_est.setInputNormals (scene_normals);
descr_est.setSearchSurface (scene);
descr_est.compute (*scene_descriptors); /**
* Find Model-Scene Correspondences with KdTree
*/
pcl::CorrespondencesPtr model_scene_corrs (new pcl::Correspondences ());
pcl::KdTreeFLANN<DescriptorType> match_search;
match_search.setInputCloud (model_descriptors);
std::vector<int> model_good_keypoints_indices;
std::vector<int> scene_good_keypoints_indices; for (size_t i = 0; i < scene_descriptors->size (); ++i)
{
std::vector<int> neigh_indices (1);
std::vector<float> neigh_sqr_dists (1);
if (!pcl_isfinite (scene_descriptors->at (i).descriptor[0])) //skipping NaNs
{
continue;
}
int found_neighs = match_search.nearestKSearch (scene_descriptors->at (i), 1, neigh_indices, neigh_sqr_dists);
if (found_neighs == 1 && neigh_sqr_dists[0] < 0.25f)
{
pcl::Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]);
model_scene_corrs->push_back (corr);
model_good_keypoints_indices.push_back (corr.index_query);
scene_good_keypoints_indices.push_back (corr.index_match);
}
}
pcl::PointCloud<PointType>::Ptr model_good_kp (new pcl::PointCloud<PointType> ());
pcl::PointCloud<PointType>::Ptr scene_good_kp (new pcl::PointCloud<PointType> ());
pcl::copyPointCloud (*model_keypoints, model_good_keypoints_indices, *model_good_kp);
pcl::copyPointCloud (*scene_keypoints, scene_good_keypoints_indices, *scene_good_kp); std::cout << "Correspondences found: " << model_scene_corrs->size () << std::endl; /**
* Clustering
*/
std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;
std::vector < pcl::Correspondences > clustered_corrs; if (use_hough_)
{
pcl::PointCloud<RFType>::Ptr model_rf (new pcl::PointCloud<RFType> ());
pcl::PointCloud<RFType>::Ptr scene_rf (new pcl::PointCloud<RFType> ()); pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est;
rf_est.setFindHoles (true);
rf_est.setRadiusSearch (rf_rad_); rf_est.setInputCloud (model_keypoints);
rf_est.setInputNormals (model_normals);
rf_est.setSearchSurface (model);
rf_est.compute (*model_rf); rf_est.setInputCloud (scene_keypoints);
rf_est.setInputNormals (scene_normals);
rf_est.setSearchSurface (scene);
rf_est.compute (*scene_rf); // Clustering
pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer;
clusterer.setHoughBinSize (cg_size_);
clusterer.setHoughThreshold (cg_thresh_);
clusterer.setUseInterpolation (true);
clusterer.setUseDistanceWeight (false); clusterer.setInputCloud (model_keypoints);
clusterer.setInputRf (model_rf);
clusterer.setSceneCloud (scene_keypoints);
clusterer.setSceneRf (scene_rf);
clusterer.setModelSceneCorrespondences (model_scene_corrs); clusterer.recognize (rototranslations, clustered_corrs);
}
else
{
pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer;
gc_clusterer.setGCSize (cg_size_);
gc_clusterer.setGCThreshold (cg_thresh_); gc_clusterer.setInputCloud (model_keypoints);
gc_clusterer.setSceneCloud (scene_keypoints);
gc_clusterer.setModelSceneCorrespondences (model_scene_corrs); gc_clusterer.recognize (rototranslations, clustered_corrs);
} /**
* Stop if no instances
*/
if (rototranslations.size () <= 0)
{
cout << "*** No instances found! ***" << endl;
return (0);
}
else
{
cout << "Recognized Instances: " << rototranslations.size () << endl << endl;
} /**
* Generates clouds for each instances found
*/
std::vector<pcl::PointCloud<PointType>::ConstPtr> instances; for (size_t i = 0; i < rototranslations.size (); ++i)
{
pcl::PointCloud<PointType>::Ptr rotated_model (new pcl::PointCloud<PointType> ());
pcl::transformPointCloud (*model, *rotated_model, rototranslations[i]);
instances.push_back (rotated_model);
} /**
* ICP
*/
std::vector<pcl::PointCloud<PointType>::ConstPtr> registered_instances;
if (true)
{
cout << "--- ICP ---------" << endl; for (size_t i = 0; i < rototranslations.size (); ++i)
{
pcl::IterativeClosestPoint<PointType, PointType> icp;
icp.setMaximumIterations (icp_max_iter_);
icp.setMaxCorrespondenceDistance (icp_corr_distance_);
icp.setInputTarget (scene);
icp.setInputSource (instances[i]);
pcl::PointCloud<PointType>::Ptr registered (new pcl::PointCloud<PointType>);
icp.align (*registered);
registered_instances.push_back (registered);
cout << "Instance " << i << " ";
if (icp.hasConverged ())
{
cout << "Aligned!" << endl;
}
else
{
cout << "Not Aligned!" << endl;
}
} cout << "-----------------" << endl << endl;
} /**
* Hypothesis Verification
*/
cout << "--- Hypotheses Verification ---" << endl;
std::vector<bool> hypotheses_mask; // Mask Vector to identify positive hypotheses pcl::GlobalHypothesesVerification<PointType, PointType> GoHv; GoHv.setSceneCloud (scene); // Scene Cloud
GoHv.addModels (registered_instances, true); //Models to verify GoHv.setInlierThreshold (hv_inlier_th_);
GoHv.setOcclusionThreshold (hv_occlusion_th_);
GoHv.setRegularizer (hv_regularizer_);
GoHv.setRadiusClutter (hv_rad_clutter_);
GoHv.setClutterRegularizer (hv_clutter_reg_);
GoHv.setDetectClutter (hv_detect_clutter_);
GoHv.setRadiusNormals (hv_rad_normals_); GoHv.verify ();
GoHv.getMask (hypotheses_mask); // i-element TRUE if hvModels[i] verifies hypotheses for (int i = 0; i < hypotheses_mask.size (); i++)
{
if (hypotheses_mask[i])
{
cout << "Instance " << i << " is GOOD! <---" << endl;
}
else
{
cout << "Instance " << i << " is bad!" << endl;
}
}
cout << "-------------------------------" << endl; /**
* Visualization
*/
pcl::visualization::PCLVisualizer viewer ("Hypotheses Verification");
viewer.addPointCloud (scene, "scene_cloud"); pcl::PointCloud<PointType>::Ptr off_scene_model (new pcl::PointCloud<PointType> ());
pcl::PointCloud<PointType>::Ptr off_scene_model_keypoints (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr off_model_good_kp (new pcl::PointCloud<PointType> ());
pcl::transformPointCloud (*model, *off_scene_model, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0));
pcl::transformPointCloud (*model_keypoints, *off_scene_model_keypoints, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0));
pcl::transformPointCloud (*model_good_kp, *off_model_good_kp, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0)); if (show_keypoints_)
{
CloudStyle modelStyle = style_white;
pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_color_handler (off_scene_model, modelStyle.r, modelStyle.g, modelStyle.b);
viewer.addPointCloud (off_scene_model, off_scene_model_color_handler, "off_scene_model");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, modelStyle.size, "off_scene_model");
} if (show_keypoints_)
{
CloudStyle goodKeypointStyle = style_violet;
pcl::visualization::PointCloudColorHandlerCustom<PointType> model_good_keypoints_color_handler (off_model_good_kp, goodKeypointStyle.r, goodKeypointStyle.g,
goodKeypointStyle.b);
viewer.addPointCloud (off_model_good_kp, model_good_keypoints_color_handler, "model_good_keypoints");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "model_good_keypoints"); pcl::visualization::PointCloudColorHandlerCustom<PointType> scene_good_keypoints_color_handler (scene_good_kp, goodKeypointStyle.r, goodKeypointStyle.g,
goodKeypointStyle.b);
viewer.addPointCloud (scene_good_kp, scene_good_keypoints_color_handler, "scene_good_keypoints");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "scene_good_keypoints");
} for (size_t i = 0; i < instances.size (); ++i)
{
std::stringstream ss_instance;
ss_instance << "instance_" << i; CloudStyle clusterStyle = style_red;
pcl::visualization::PointCloudColorHandlerCustom<PointType> instance_color_handler (instances[i], clusterStyle.r, clusterStyle.g, clusterStyle.b);
viewer.addPointCloud (instances[i], instance_color_handler, ss_instance.str ());
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, clusterStyle.size, ss_instance.str ()); CloudStyle registeredStyles = hypotheses_mask[i] ? style_green : style_cyan;
ss_instance << "_registered" << endl;
pcl::visualization::PointCloudColorHandlerCustom<PointType> registered_instance_color_handler (registered_instances[i], registeredStyles.r,
registeredStyles.g, registeredStyles.b);
viewer.addPointCloud (registered_instances[i], registered_instance_color_handler, ss_instance.str ());
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, registeredStyles.size, ss_instance.str ());
} while (!viewer.wasStopped ())
{
viewer.spinOnce ();
} return (0);
}
聚类
以下的代码将运行一个完整的聚类管道,输入的管道是一对点云。输出是
std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;
rototraslations表示在场景里面一列粗糙的转换模型。
/**
* Compute Normals
*/
pcl::NormalEstimationOMP<PointType, NormalType> norm_est;
norm_est.setKSearch (10);
norm_est.setInputCloud (model);
norm_est.compute (*model_normals); norm_est.setInputCloud (scene);
norm_est.compute (*scene_normals); /**
* Downsample Clouds to Extract keypoints
*/
pcl::UniformSampling<PointType> uniform_sampling;
uniform_sampling.setInputCloud (model);
uniform_sampling.setRadiusSearch (model_ss_);
uniform_sampling.filter (*model_keypoints);
std::cout << "Model total points: " << model->size () << "; Selected Keypoints: " << model_keypoints->size () << std::endl; uniform_sampling.setInputCloud (scene);
uniform_sampling.setRadiusSearch (scene_ss_);
uniform_sampling.filter (*scene_keypoints);
std::cout << "Scene total points: " << scene->size () << "; Selected Keypoints: " << scene_keypoints->size () << std::endl; /**
* Compute Descriptor for keypoints
*/
pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est;
descr_est.setRadiusSearch (descr_rad_); descr_est.setInputCloud (model_keypoints);
descr_est.setInputNormals (model_normals);
descr_est.setSearchSurface (model);
descr_est.compute (*model_descriptors); descr_est.setInputCloud (scene_keypoints);
descr_est.setInputNormals (scene_normals);
descr_est.setSearchSurface (scene);
descr_est.compute (*scene_descriptors); /**
* Find Model-Scene Correspondences with KdTree
*/
pcl::CorrespondencesPtr model_scene_corrs (new pcl::Correspondences ());
pcl::KdTreeFLANN<DescriptorType> match_search;
match_search.setInputCloud (model_descriptors);
std::vector<int> model_good_keypoints_indices;
std::vector<int> scene_good_keypoints_indices; for (size_t i = 0; i < scene_descriptors->size (); ++i)
{
std::vector<int> neigh_indices (1);
std::vector<float> neigh_sqr_dists (1);
if (!pcl_isfinite (scene_descriptors->at (i).descriptor[0])) //skipping NaNs
{
continue;
}
int found_neighs = match_search.nearestKSearch (scene_descriptors->at (i), 1, neigh_indices, neigh_sqr_dists);
if (found_neighs == 1 && neigh_sqr_dists[0] < 0.25f)
{
pcl::Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]);
model_scene_corrs->push_back (corr);
model_good_keypoints_indices.push_back (corr.index_query);
scene_good_keypoints_indices.push_back (corr.index_match);
}
}
pcl::PointCloud<PointType>::Ptr model_good_kp (new pcl::PointCloud<PointType> ());
pcl::PointCloud<PointType>::Ptr scene_good_kp (new pcl::PointCloud<PointType> ());
pcl::copyPointCloud (*model_keypoints, model_good_keypoints_indices, *model_good_kp);
pcl::copyPointCloud (*scene_keypoints, scene_good_keypoints_indices, *scene_good_kp); std::cout << "Correspondences found: " << model_scene_corrs->size () << std::endl; /**
* Clustering
*/
std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;
std::vector < pcl::Correspondences > clustered_corrs; if (use_hough_)
{
pcl::PointCloud<RFType>::Ptr model_rf (new pcl::PointCloud<RFType> ());
pcl::PointCloud<RFType>::Ptr scene_rf (new pcl::PointCloud<RFType> ()); pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est;
rf_est.setFindHoles (true);
rf_est.setRadiusSearch (rf_rad_); rf_est.setInputCloud (model_keypoints);
rf_est.setInputNormals (model_normals);
rf_est.setSearchSurface (model);
rf_est.compute (*model_rf); rf_est.setInputCloud (scene_keypoints);
rf_est.setInputNormals (scene_normals);
rf_est.setSearchSurface (scene);
rf_est.compute (*scene_rf); // Clustering
pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer;
clusterer.setHoughBinSize (cg_size_);
clusterer.setHoughThreshold (cg_thresh_);
clusterer.setUseInterpolation (true);
clusterer.setUseDistanceWeight (false); clusterer.setInputCloud (model_keypoints);
clusterer.setInputRf (model_rf);
clusterer.setSceneCloud (scene_keypoints);
clusterer.setSceneRf (scene_rf);
clusterer.setModelSceneCorrespondences (model_scene_corrs); clusterer.recognize (rototranslations, clustered_corrs);
}
else
{
pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer;
gc_clusterer.setGCSize (cg_size_);
gc_clusterer.setGCThreshold (cg_thresh_); gc_clusterer.setInputCloud (model_keypoints);
gc_clusterer.setSceneCloud (scene_keypoints);
gc_clusterer.setModelSceneCorrespondences (model_scene_corrs); gc_clusterer.recognize (rototranslations, clustered_corrs);
} /**
* Stop if no instances
*/
模型场景投影
为了提高与每一个对象如果相联系的粗糙的转换,我们创造了一个instances列去存储"粗糙"的转换
for (size_t i = 0; i < rototranslations.size (); ++i)
{
pcl::PointCloud<PointType>::Ptr rotated_model (new pcl::PointCloud<PointType> ());
pcl::transformPointCloud (*model, *rotated_model, rototranslations[i]);
instances.push_back (rotated_model);
} /**
* ICP
*/
接下去,我们执行ICP在wrt的实例上。
if (true)
{
cout << "--- ICP ---------" << endl; for (size_t i = 0; i < rototranslations.size (); ++i)
{
pcl::IterativeClosestPoint<PointType, PointType> icp;
icp.setMaximumIterations (icp_max_iter_);
icp.setMaxCorrespondenceDistance (icp_corr_distance_);
icp.setInputTarget (scene);
icp.setInputSource (instances[i]);
pcl::PointCloud<PointType>::Ptr registered (new pcl::PointCloud<PointType>);
icp.align (*registered);
registered_instances.push_back (registered);
cout << "Instance " << i << " ";
if (icp.hasConverged ())
{
cout << "Aligned!" << endl;
}
else
{
cout << "Not Aligned!" << endl;
}
} cout << "-----------------" << endl << endl;
} /**
* Hypothesis Verification
*/
如果验证
std::vector<bool> hypotheses_mask; // Mask Vector to identify positive hypotheses pcl::GlobalHypothesesVerification<PointType, PointType> GoHv; GoHv.setSceneCloud (scene); // Scene Cloud
GoHv.addModels (registered_instances, true); //Models to verify GoHv.setInlierThreshold (hv_inlier_th_);
GoHv.setOcclusionThreshold (hv_occlusion_th_);
GoHv.setRegularizer (hv_regularizer_);
GoHv.setRadiusClutter (hv_rad_clutter_);
GoHv.setClutterRegularizer (hv_clutter_reg_);
GoHv.setDetectClutter (hv_detect_clutter_);
GoHv.setRadiusNormals (hv_rad_normals_); GoHv.verify ();
GoHv.getMask (hypotheses_mask); // i-element TRUE if hvModels[i] verifies hypotheses for (int i = 0; i < hypotheses_mask.size (); i++)
{
if (hypotheses_mask[i])
{
cout << "Instance " << i << " is GOOD! <---" << endl;
}
else
{
cout << "Instance " << i << " is bad!" << endl;
}
}
cout << "-------------------------------" << endl; /**
* Visualization
*/
GlobalHypothesesVerification作为resgistered_instances的一列输入和一个场景。所以我们能够验证他们来得到一个hypotheses_mask这是一个bool类型的数组,如果registered_instances[i]是一个正确的如果那么hypotheses_mask[i]是TRUE。
可视化
viewer.addPointCloud (scene, "scene_cloud"); pcl::PointCloud<PointType>::Ptr off_scene_model (new pcl::PointCloud<PointType> ());
pcl::PointCloud<PointType>::Ptr off_scene_model_keypoints (new pcl::PointCloud<PointType> ()); pcl::PointCloud<PointType>::Ptr off_model_good_kp (new pcl::PointCloud<PointType> ());
pcl::transformPointCloud (*model, *off_scene_model, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0));
pcl::transformPointCloud (*model_keypoints, *off_scene_model_keypoints, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0));
pcl::transformPointCloud (*model_good_kp, *off_model_good_kp, Eigen::Vector3f (-1, 0, 0), Eigen::Quaternionf (1, 0, 0, 0)); if (show_keypoints_)
{
CloudStyle modelStyle = style_white;
pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_color_handler (off_scene_model, modelStyle.r, modelStyle.g, modelStyle.b);
viewer.addPointCloud (off_scene_model, off_scene_model_color_handler, "off_scene_model");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, modelStyle.size, "off_scene_model");
} if (show_keypoints_)
{
CloudStyle goodKeypointStyle = style_violet;
pcl::visualization::PointCloudColorHandlerCustom<PointType> model_good_keypoints_color_handler (off_model_good_kp, goodKeypointStyle.r, goodKeypointStyle.g,
goodKeypointStyle.b);
viewer.addPointCloud (off_model_good_kp, model_good_keypoints_color_handler, "model_good_keypoints");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "model_good_keypoints"); pcl::visualization::PointCloudColorHandlerCustom<PointType> scene_good_keypoints_color_handler (scene_good_kp, goodKeypointStyle.r, goodKeypointStyle.g,
goodKeypointStyle.b);
viewer.addPointCloud (scene_good_kp, scene_good_keypoints_color_handler, "scene_good_keypoints");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, goodKeypointStyle.size, "scene_good_keypoints");
} for (size_t i = 0; i < instances.size (); ++i)
{
std::stringstream ss_instance;
ss_instance << "instance_" << i; CloudStyle clusterStyle = style_red;
pcl::visualization::PointCloudColorHandlerCustom<PointType> instance_color_handler (instances[i], clusterStyle.r, clusterStyle.g, clusterStyle.b);
viewer.addPointCloud (instances[i], instance_color_handler, ss_instance.str ());
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, clusterStyle.size, ss_instance.str ()); CloudStyle registeredStyles = hypotheses_mask[i] ? style_green : style_cyan;
ss_instance << "_registered" << endl;
pcl::visualization::PointCloudColorHandlerCustom<PointType> registered_instance_color_handler (registered_instances[i], registeredStyles.r,
registeredStyles.g, registeredStyles.b);
viewer.addPointCloud (registered_instances[i], registered_instance_color_handler, ss_instance.str ());
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, registeredStyles.size, ss_instance.str ());
} while (!viewer.wasStopped ())
{
viewer.spinOnce ();
} return (0);
}
执行
./global_hypothesis_verification milk.pcd milk_cartoon_all_small_clorox.pcd
有效的如果是图中绿色的部分
你能够模拟很多其它错误通过使用一个尺寸參数对于hough相关组决策算法。
./global_hypothesis_verification milk.pcd milk_cartoon_all_small_clorox.pcd --cg_size 0.035
3D物体识别的如果检验的更多相关文章
- ROS kinetic + Realsens D435i + ORK + LINEMOD 物体识别
1. ORK 网址:https://wg-perception.github.io/object_recognition_core/ ORK (Object Recognition Kitchen) ...
- HMS Core AR Engine 2D图片/3D物体跟踪技术 助力打造更智能AR交互体验
AR技术已经被广泛应用于营销.教育.游戏.展览等场景.通过2D图像跟踪技术和3D物体跟踪技术,用户只需使用一台手机进行拍摄,即可实现海报.卡牌等平面物体以及文物.手办等立体物体的AR效果.尽管近年来2 ...
- unity区分点击在3D物体还是2D UI上
当场景中的3D物体需要响应点击,但同时有UI显示时,存在判断点击是在3D物体上还是UI上的问题,办法如下: 1. 射线检测所有2D 3D物体,有2D物体被检测到时表明当前有UI.但无论Physics2 ...
- 使用3D物体做GUI界面
通常来说,Unity自带的OnGUI不太好用,靠代码完成,在场景中无法直接编辑.所以,一般项目使用NGUI插件来做界面,但我这次要修改一个游戏,它没用NGUI,也没用OnGUI,而是使用类似NGUI的 ...
- Unity 3D物体的点击事件响应以及NGUI坐标和世界坐标的互相转换
Unity 版本:4.5 NGUI版本:3.6.5 参考链接:http://game.ceeger.com/Script/Camera/Camera.ScreenPointToRay.html,Uni ...
- cocos 射线检测 3D物体 (Sprite3D点击)
看了很多朋友问怎么用一个3D物体做一个按钮,而且网上好像还真比较难找到答案, 今天翻了一下cocos源码发现Ray 已经封装了intersects函数,那么剩下的工作其实很简单了, 从屏幕的一个poi ...
- 谷歌开源的TensorFlow Object Detection API视频物体识别系统实现教程
视频中的物体识别 摘要 物体识别(Object Recognition)在计算机视觉领域里指的是在一张图像或一组视频序列中找到给定的物体.本文主要是利用谷歌开源TensorFlow Object De ...
- Tensorflow object detection API 搭建物体识别模型(四)
四.模型测试 1)下载文件 在已经阅读并且实践过前3篇文章的情况下,读者会有一些文件夹.因为每个读者的实际操作不同,则文件夹中的内容不同.为了保持本篇文章的独立性,制作了可以独立运行的文件夹目标检测. ...
- Tensorflow object detection API 搭建物体识别模型(三)
三.模型训练 1)错误一: 在桌面的目标检测文件夹中打开cmd,即在路径中输入cmd后按Enter键运行.在cmd中运行命令: python /your_path/models-master/rese ...
随机推荐
- <context annotation-config />标签意义
该标签隐式的向Spring容器注册了: AutowiredAnnotationBeanPostProcessor CommondAnnotationBeanPostProcessor Persiste ...
- h5 rem
<script> (function(){ setRem(); window.addEventListener('orientation' in window?"deviceor ...
- 基于html5 canvas 的客户端异步上传图片的插件,支持客户端压缩图片尺寸
/** * Created by xx on 15-05-28. * 基于html5 canvas 的客户端异步上传画片的插件 * 在实际应用中,常常要用于上传图片的功能.在现在越来越多的手机weba ...
- R中ifelse、which、%in%的用法
R中ifelse.which.%in%的用法 (2014-02-08 13:54:08)标签: 教育 在R学习过程中,遇到了ifelse.which.%in%,下面分别举例,说明他们的用法.1.ife ...
- [hadoop读书笔记] 第四章 Hadoop I/O操作
P92 压缩 P102 序列化 序列化:将结构化对象转为字节流便于在网上传输或写到磁盘进行永久性存储的过程 用于进程之间的通信或者数据的永久存储 反序列化:将字节流转为结构化对象的逆过程 Hadoop ...
- Sword STL仿函数示例
一元函数 unary_function .有返回值. .只有一个参数. template <class Arg, class Result> struct unary_function { ...
- Sword libcurl使用
libcurl编译 >> ./configure --prefix=/opt/soft/curl --disable-ldap --disable-ldaps >> make ...
- 在C++中调用DLL中的函数(2)
本文转自:http://blog.sina.com.cn/s/blog_53004b4901009h3b.html 应用程序使用DLL可以采用两种方式: 一种是隐式链接,另一种是显式链接.在使用DLL ...
- oracle PLSQL基础学习
--oracle 练习: /**************************************************PL/SQL编程基础************************** ...
- 第三百六十六节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的bool组合查询
第三百六十六节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的bool组合查询 bool查询说明 filter:[],字段的过滤,不参与打分must:[] ...