多用于图像检索、分类

3.2.1.4 视觉单词模型

视觉词袋(BoVW,Bag of Visual Words)模型,是“词袋”(BoW,Bag of Words)模型从自然语言处理与分析领域向图像处理与分析领域的一次自然推广。对于任意一幅图像,BoVW模型提取该图像中的基本元素,并统计该图像中这些基本元素出现的频率,用直方图的形式来表示。通常使用“图像局部特征”来类比BoW模型中的单词,如SIFT、SURF、HOG等特征,所以也称视觉词袋模型。图像BoVW模型表示的直观示意图如图所示。

图3-3 图像表示为视觉单词模型

利用BoVW模型表示图像,获得图像的全局直方图表示,主要有四个关键步骤:

Step 1:图像局部特征提取(Image Local Features Extrication)。根据具体应用考虑,综合考虑特征的独特性、提取算法复杂性、效果好坏等选择特征。利用局部特征提取算法,从图像中提取局部特征。

Step 2:视觉词典构造(Visual Dictionary Construction)。一般是从图像库中选取一部分来自不同场景或类别的图像来组成训练图像集,并提取其局部特征,然后对训练图像的所有局部特征向量通过适当的去冗余处理得到一些有代表性的特征向量,将其定义为视觉单词。通常所采用的处理方法是对训练图像的所有局部特征向量进行聚类分析,将聚类中心定义为视觉单词。所有视觉单词组成视觉词典,用于图像的直方图表示。

Step 3:特征向量量化(Feature Vector Quantization)。BoVW模型采用向量量化技术实现。现对图像局部特征的编码。向量量化结果是将图像的局部特征向量量化为视觉单词中与其距离最相似的视觉单词。向量量化过程实际上是一个搜索过程,通常采用最近邻搜索算法,搜索出与图像局部特征向量最为匹配的视觉单词。

Step 4:用视觉单词直方图表示图像,也称为量化编码集成(Pooling)。一幅图像的所有局部特征向量被量化后,可统计出视觉词典中每个视觉单词在该图像中出现的频数,得到一个关于视觉单词的直方图,其本质是上一步所得量化编码的全局统计结果,是按视觉单词索引顺序组成的一个数值向量(各个元素的值还可以根据一定的规则进行加权)。该向量即为图像的最终表示形式。

3.2.1.5 非结构图像数据的结构化描述

图像数据的结构化描述,可以用图像稀疏特征学习的统一框架进行表示。图像稀疏特征学习问题,是在提取图像局部特征的基础上,采用学习方法实现对图像的稀疏表示,最终以一个稀疏向量的形式来表示图像,描述图像的视觉内容。其本质仍然是一个图像特征提取问题:以图像局部特征集为数据源提取可以表征其信息的单个稀疏特征(向量)。在机器学习或稀疏表示研究领域,也称之为特征学习或稀疏学习问题。图像原始数据或图像局部特征数据本身都是高维的,它们从不同的层次(像素层、比像素高一级的特征层)对图像内容进行了描述,但往往都不是稀疏的。高维度和稀疏性是形成图像有效特征表示的重要属性。基于图像局部特征的稀疏学习的实现过程可用图3-4示意。

图3-4 稀疏学习的实现过程

具体地,选取图像库中的全部或部分图像作为训练图像,提取底层局部特征,通过词典学习方法(如聚类方法或基于稀疏学习的方法)得到超完备视觉词典,然后以此视觉词典作为编码码本,对库图像的局部特征进行特征编码,如采用向量量化编码、稀疏编码或局部编码等方法,得到每幅库图像的局部稀疏编码矩阵,进一步进行特征集成,如采用Sum Pooling、MaxPooling等集成函数或SPM空间集成策略,就可得到图像库中每幅图像的稀疏特征(即全局稀疏表示);另一方面,应用系统的输入图像的局部特征被提取,并利用训练好的视觉词典对其进行相同的特征编码和特征集成操作,就可得到输入图像的全局稀疏特征。

【其他文献】

图像视觉特征与视觉单词构造-2016年 - 百度文库 https://wenku.baidu.com/view/072358f15ff7ba0d4a7302768e9951e79b89699f.html

视觉词袋模型(BOVW) - 一双拖鞋走天下 - 博客园 https://www.cnblogs.com/chensheng-zhou/p/5056547.html

视觉词典BOW小结 - Darlingqiang的博客 - CSDN博客 https://blog.csdn.net/darlingqiang/article/details/81358531

视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析(1) - jason来自星星 - 博客园 https://www.cnblogs.com/zjiaxing/p/5548265.html

计算机视觉课程作业 基于词袋模型的图像分类算法 - 蒋_X_X Blog - CSDN博客 https://blog.csdn.net/baidu_28563321/article/details/46348439

视觉单词模型、词袋模型BoW的更多相关文章

  1. 第十九节、基于传统图像处理的目标检测与识别(词袋模型BOW+SVM附代码)

    在上一节.我们已经介绍了使用HOG和SVM实现目标检测和识别,这一节我们将介绍使用词袋模型BOW和SVM实现目标检测和识别. 一 词袋介绍 词袋模型(Bag-Of-Word)的概念最初不是针对计算机视 ...

  2. 计算机视觉中的词袋模型(Bow,Bag-of-words)

    计算机视觉中的词袋模型(Bow,Bag-of-words) Bag-of-words 读 'xw20084898的专栏'的blogBag-of-words model in computer visi ...

  3. 词袋模型bow和词向量模型word2vec

    在自然语言处理和文本分析的问题中,词袋(Bag of Words, BOW)和词向量(Word Embedding)是两种最常用的模型.更准确地说,词向量只能表征单个词,如果要表示文本,需要做一些额外 ...

  4. NLP基础——词集模型(SOW)和词袋模型(BOW)

    (1)词集模型(Set Of Words): 单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个. (2)词袋模型(Bag Of Words): 如果一个单词在文档中出现不止一 ...

  5. DBoW2 词袋模型笔记

    DBoW算法用于解决Place Recognition问题,ORB-SLAM,VINS-Mono等SLAM系统中的闭环检测模块均采用了该算法.来源于西班牙的Juan D. Tardos课题组. 主要是 ...

  6. 词袋模型(BOW,bag of words)和词向量模型(Word Embedding)概念介绍

    例句: Jane wants to go to Shenzhen. Bob  wants to go to Shanghai. 一.词袋模型 将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个 ...

  7. 词袋模型(BOW, bag of words)

    词集模型:单词构成的集合,每个单词只出现一次. 词袋模型:把每一个单词都进行统计,同时计算每个单词出现的次数. 在train_x中,总共有6篇文档,每一行代表一个样本即一篇文档.我们的目标是将trai ...

  8. R+NLP︱text2vec包——BOW词袋模型做监督式情感标注案例(二,情感标注)

    要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 在之前的开篇提到了text2vec ...

  9. 视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析

    原文地址:http://www.cnblogs.com/zjiaxing/p/5548265.html 在目前实际的视觉SLAM中,闭环检测多采用DBOW2模型https://github.com/d ...

随机推荐

  1. MongoDB阅读精要

    部署:MongoDB服务端可运行在Linux.Windows或IOS平台,支持32位和64位应用,默认端口为27017.推荐运行在64位平台,因为MongoDB在32位模式运行时支持的最大文件尺寸为2 ...

  2. JMX超详细解读<转>

    一.JMX的定义 JMX(Java Management Extensions)是一个为应用程序植入管理功能的框架.JMX是一套标准的代理和服务,实际上,用户可以在任何Java应用程序中使用这些代理和 ...

  3. AT91SAM9260EK-38k产生原理

    9260内部有5个内部计数器,分别为TIMER_CLOCK1 --- TIMER_CLOCK5.通过这5个时钟可以为各种内部设备提供时钟基准. 其中,红外发射38K方波,是通过CLOCK1计数产生. ...

  4. drupal pathauto的配置

  5. ECS Linux服务器xfs磁盘扩容

    ECS Linux服务器xfs磁盘扩 ECS Linux服务器xfs磁盘使用阿里云官方提供的磁盘扩容方法扩容会有报错: [root@iZ28u04wmy2Z ~]# e2fsck /dev/xvdb1 ...

  6. Urllib3 库详解

    文档:http://urllib3.readthedocs.io/en/latest/

  7. IDEA隐藏.idea文件夹

    打开setting,Editor-->File Types.在Ignore files and folders中添加“.idea;”

  8. 100 行代码实现的 JavaScript MVC 样式框架

    介绍 使用过 JavaScript框架(如 AngularJS, Backbone 或者Ember)的人都很熟悉在UI(用户界面,前端)中mvc的工作机理.这些框架实现了MVC,使得在一个单页面中实现 ...

  9. SQL Server默认1433端口修改方法

    SQL Server默认端口1433端口并不是十分的安全,需要将SQL Server默认端口进行更改,在更改之前,让我们先了解一下什么是1433端口. 什么是1433端口 1433端口,是SQL Se ...

  10. vncserve安装配置 (转)

    使用服务器时,利用远程桌面是非常方便的,否则需要跑到服务器机房操作非常的费事,或者需要远程操作机器是也可以使用,一般的操作系统都会带有远程桌面功能,但是不如第三方的的软件好用,对于Linux系统常用的 ...