转自:http://www.cnblogs.com/nazhizq/p/6520072.html

上节说到表达式的解析问题,exprstate函数用于解析普通的赋值表达式。lua语言支持多变量赋值。本文先从单变量赋值表达式讲起。

a =
b =
c = a + b

对于简单的两个数的求和过程,lua源码是如何解析的呢?

首先,当词法分析获取到第一个token为‘a’的类型是TK_NAME(285),然后是chunk函数,statment函数,走到exprstate函数:

static void exprstat (LexState *ls) { /* stat -> func | assignment */
FuncState *fs = ls->fs; struct LHS_assign v;/*保存等号左边的变量名*/
primaryexp(ls, &v.v);/*处理等号左边的变量名*/
if (v.v.k == VCALL) /* stat -> func */
  SETARG_C(getcode(fs, &v.v), ); /* call statement uses no results */
else { /* stat -> assignment */
  v.prev = NULL;
  assignment(ls, &v, ); } }

其中,LHS_assign是一个包含expdesc结构体的链表,拥有指向另一个变量的指针*prev。每个expdesc代表一个变量,该链表用于保存等式左边的所有变量。

表达式分割的函数最终会从primaryexp进入到prefixexp函数里,由于当前的token值为TK_NAME=285,走到singlevar,即表示单变量的解析函数。

static void singlevar (LexState *ls, expdesc *var) {
TString *varname = str_checkname(ls);
FuncState *fs = ls->fs;
if (singlevaraux(fs, varname, var, ) == VGLOBAL)
var->u.s.info = luaK_stringK(fs, varname); /* info points to global name *//*指向变量名在寄存器的索引值*/
}

luaK_stringK的最终返回值为变量名'a'在fs->f->k这个数组中的索引值,保存在var->u.s.info。这个值在生成字节码时会用到。

然后是singlevaraux,第一次进入改函数,fs != NULL,进入else,在当前层次查找变量,找不到自动递归到上层,即fs->prev指向的上层fs,最后返回VGLOBAL。

static int singlevaraux (FuncState *fs, TString *n, expdesc *var, int base) {
if (fs == NULL) { /* no more levels? */
init_exp(var, VGLOBAL, NO_REG); /* default is global variable */
return VGLOBAL;
}
else {
int v = searchvar(fs, n); /* look up at current level */
if (v >= ) {
init_exp(var, VLOCAL, v);
if (!base)
markupval(fs, v); /* local will be used as an upval */
return VLOCAL;
}
else { /* not found at current level; try upper one */
if (singlevaraux(fs->prev, n, var, ) == VGLOBAL)/**/
return VGLOBAL;
var->u.s.info = indexupvalue(fs, n, var); /* else was LOCAL or UPVAL */
var->k = VUPVAL; /* upvalue in this level */
return VUPVAL;
}
}
}

最后通过luaK_stringK函数调用addK函数对变量‘a’进行处理。 luaH_set()一开始调用luaH_get()在全局变量表中查找该value是否存在, 存在则直接返回值.不存在则调用newkey()完成添加动作。最终变量名'a'会放到f->k这个数组中,并且会返回对应的索引,然后讲索引保存到字节码中。

static int addk (FuncState *fs, TValue *k, TValue *v) {
lua_State *L = fs->L;
TValue *idx = luaH_set(L, fs->h, k);
Proto *f = fs->f;
int oldsize = f->sizek;
if (ttisnumber(idx)) {
lua_assert(luaO_rawequalObj(&fs->f->k[cast_int(nvalue(idx))], v));
return cast_int(nvalue(idx));
}
else { /* constant not found; create a new entry */
setnvalue(idx, cast_num(fs->nk));
luaM_growvector(L, f->k, fs->nk, f->sizek, TValue,
MAXARG_Bx, "constant table overflow");
while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
setobj(L, &f->k[fs->nk], v);
luaC_barrier(L, f, v);
return fs->nk++;
}
}

这时候,回到exprstat函数,等号左边的变量名处理完了。然后处理等号右边的值,调用assignment函数赋值。如果下一个token是逗号,说明是多变量赋值。本例中是单变量。nexps = explist1(ls, &e);用于处理等号右边的值的表达式,将结果存入&e中,并返回右值的个数,然后判断是表达式的个数是否和右值的个数相等。

static void assignment (LexState *ls, struct LHS_assign *lh, int nvars) {
expdesc e;
check_condition(ls, VLOCAL <= lh->v.k && lh->v.k <= VINDEXED,
"syntax error");
if (testnext(ls, ',')) { /* assignment -> `,' primaryexp assignment */
struct LHS_assign nv;
nv.prev = lh;
primaryexp(ls, &nv.v);
if (nv.v.k == VLOCAL)
check_conflict(ls, lh, &nv.v);
assignment(ls, &nv, nvars+);
}
else { /* assignment -> `=' explist1 */
int nexps;
checknext(ls, '=');
nexps = explist1(ls, &e);/*解析等号右边的值*/
if (nexps != nvars) {
adjust_assign(ls, nvars, nexps, &e);
if (nexps > nvars)
ls->fs->freereg -= nexps - nvars; /* remove extra values */
}
else {
luaK_setoneret(ls->fs, &e); /* close last expression */
luaK_storevar(ls->fs, &lh->v, &e);/*生成指令*/
return; /* avoid default */
}
}
init_exp(&e, VNONRELOC, ls->fs->freereg-); /* default assignment */
luaK_storevar(ls->fs, &lh->v, &e);
}

表达式分析函数是通过subexpr函数进行递归下降分析。这个知识点以后会专门来讲,现在由于只是简单赋值,不会涉及到运算符优先级的问题。本例中最终调用的是simpleexp函数,进入case TK_NUMBER:

static void simpleexp (LexState *ls, expdesc *v) {
/* simpleexp -> NUMBER | STRING | NIL | true | false | ... |
constructor | FUNCTION body | primaryexp */
switch (ls->t.token) {
case TK_NUMBER: {
init_exp(v, VKNUM, );/*传入寄存器位置为0*/
v->u.nval = ls->t.seminfo.r;/*将浮点数1.0赋值给v->u.navl*/
break;
}
case …………………………
}
luaX_next(ls);
}

最后,luaK_storevar函数会将右值保存在寄存器,并生成相应的指令码

void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
switch (var->k) {
case VLOCAL: {
freeexp(fs, ex);
exp2reg(fs, ex, var->u.s.info);
return;
}
case VUPVAL: {
int e = luaK_exp2anyreg(fs, ex);
luaK_codeABC(fs, OP_SETUPVAL, e, var->u.s.info, );
break;
}
case VGLOBAL: {/*本例中是全局变量*/
int e = luaK_exp2anyreg(fs, ex);//返回寄存器索引
luaK_codeABx(fs, OP_SETGLOBAL, e, var->u.s.info);//生成指令
break;
}
case VINDEXED: {
int e = luaK_exp2RK(fs, ex);
luaK_codeABC(fs, OP_SETTABLE, var->u.s.info, var->u.s.aux, e);
break;
}
default: {
lua_assert(); /* invalid var kind to store */
break;
}
}
freeexp(fs, ex);
}

最后调用luaK_codeABx生成指令,关于指令问题,下回再叙。

int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
lua_assert(getCMode(o) == OpArgN);
return luaK_code(fs, CREATE_ABx(o, a, bc), fs->ls->lastline);
}

<转>赋值表达式解析的流程的更多相关文章

  1. lua源码学习篇三:赋值表达式解析的流程

    上节说到表达式的解析问题,exprstate函数用于解析普通的赋值表达式.lua语言支持多变量赋值.本文先从单变量赋值表达式讲起. a = b = c = a + b 对于简单的两个数的求和过程,lu ...

  2. java字符串应用之表达式解析器

    一.表达式的组成    1.数字    2.运算符:+ - / * ^ % =    3.圆括号    4.变量二.运算符优先级    由高到低分别为:+-(正负号).^.*/%.+-.=    优先 ...

  3. 【前端知识体系-JS相关】你真的了解JavaScript编译解析的流程吗?

    1. JS编译解析的流程 1.1 JS运行分三步 语法分析(通篇扫描是否有语法错误),预编译(发生在函数执行的前一刻),解释执行(一行行执行). 1.2 预编译执行分五步 创建AO对象(Activat ...

  4. python爬虫---爬虫的数据解析的流程和解析数据的几种方式

    python爬虫---爬虫的数据解析的流程和解析数据的几种方式 一丶爬虫数据解析 概念:将一整张页面中的局部数据进行提取/解析 作用:用来实现聚焦爬虫的吧 实现方式: 正则 (针对字符串) bs4 x ...

  5. SPEL 表达式解析

    Spring Expression Language 解析器 SPEL解析过程 使用 ExpressionParser 基于 ParserContext 将字符串解析为 Expression, Exp ...

  6. JavaScript—赋值表达式

      赋值表达式的运算顺序是从右到左的,因此,可以通过以下方法对多个变量赋值 1 i=j=k=0;//也就是把三个变量初始化为0 赋值表达式中的递增和递减 n++和++n的区别:     简单来说,根据 ...

  7. Java学习随笔2:Java复合赋值表达式的小问题

    问题:i += j只是i = i + j的简写么? 答案:非也!看下面的程序: int i = 5; long j = 8; i += j; // 可以通过编译且结果正确 i = i + j; // ...

  8. JavaScript—赋值表达式-1

    赋值表达式的运算顺序是从右到左的,因此,可以通过以下方法对多个变量赋值 i=j=k=0;//也就是把三个变量初始化为0 赋值表达式中的递增和递减 n++和++n的区别: 简单来说,根据运算顺序,n++ ...

  9. C++赋值运算符与赋值表达式

    赋值运算符 赋值符号“=”就是赋值运算符,它的作用是将一个数据赋给一个变量.如“a=3”的作用是执行一次赋值操作(或称赋值运算).把常量3赋给变量a.也可以将一个表达式的值赋给一个变量. 赋值过程中的 ...

随机推荐

  1. 什么是L2 frame?

    The data link layer or layer 2 is the second layer of the seven-layer OSI model of computer networki ...

  2. jsp table 表格单元格编辑示例

    列表单元格: //两个 隐藏的 input, 第一个存 记录 id, 单元格内容是排序码 : <td id="ordinal"><%=ordinal%> & ...

  3. Android 原生 Android ActionBar

    本文内容 关于 ActionBar 必要条件 项目结构 环境 演示一:Action Bar 显示隐藏 演示二:Action Item 显示菜单选项 演示三:Action Home 启用"返回 ...

  4. OCIEnvCreate 失败,返回代码为 -1的解决方法

    错误描述 连接Oracle始终报这个错误: {System.Exception: OCIEnvCreate 失败,返回代码为 -1,但错误消息文本不可用 本机环境是oracle10g客户端,以前也连过 ...

  5. android中实现本地广播

    上一篇文章实现了自定义广播: android中实现自定义广播 自定义广播允许被其他应用使用,有些情况下只允许广播在本应用范围内使用,可以用本地广播的方式实现 下面是实现的代码部分,MainActivi ...

  6. 【转】Java四种线程池的使用

    Java通过Executors提供四种线程池,分别为:newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程.newFixe ...

  7. ANT简明教程[转载]

    一.ant关键元素 1. project元素 project 元素是 Ant 构件文件的根元素, Ant 构件文件至少应该包含一个 project 元素,否则会发生错误.在每个 project 元素下 ...

  8. 使用gradle的application插件进行Spring-boot项目打包

    1:在build.gradle中增加以下配置 fat jar并不总是一个合适的选择,比如需要依赖跟jar分离,使用gradle的application插件就可以做到. 在GradleTest项目中,b ...

  9. flume-elasticsearch-sink indexName

  10. 火狐浏览器flash经常奔溃的

    火狐浏览器flash经常奔溃的 1.首先,在火狐浏览器地址栏在输入:about:config?filter=dom.ipc.plugins.flash.disable-protected-mode,按 ...