Generating cross-validation folds (Java approach)

文献:

http://weka.wikispaces.com/Generating+cross-validation+folds+%28Java+approach%29

This article describes how to generate train/test splits for cross-validation using
the Weka API directly.

The following variables are given:

Instances data =  ...;   // contains the full dataset we wann
create train/test sets from

int seed = ...;          // the seed for
randomizing the data

int folds = ...;         // the number of
folds to generate, >=2

 Randomize the data

First, randomize
your data:

Random rand = new Random(seed);   // create seeded number generator

randData = new
Instances(data);   // create copy of
original data

randData.randomize(rand);         // randomize data
with number generator

In case your data
has a nominal class and you wanna perform stratified cross-validation:

randData.stratify(folds);

 Generate the folds

 Single run

Next thing that we
have to do is creating the train and the test set:

for
(int n = 0; n < folds; n++) {

Instances train = randData.trainCV(folds, n);

Instances test = randData.testCV(folds, n);

// further
processing, classification, etc.

...

}

Note:

  • the above code is used by the weka.filters.supervised.instance.StratifiedRemoveFolds filter
  • the weka.classifiers.Evaluation class and the Explorer/Experimenter
    would use this method for obtaining the train set:

Instances train = randData.trainCV(folds, n, rand);

 Multiple runs

The example above
only performs one run of a cross-validation. In case you want to run 10 runs of
10-fold cross-validation, use the following loop:

Instances data = ...;  // our dataset again, obtained from
somewhere

int runs = 10;

for
(int i = 0; i < runs; i++) {

seed = i+1;  // every run gets a
new, but defined seed value

// see:
randomize the data

...

// see: generate
the folds

...

}

一个简单的小实验:

继续对上一节中的红酒和白酒进行分类。分类器没有变化,只是增加了重复试验过程

package assignment2;

import weka.core.Instances;

import weka.core.converters.ConverterUtils.DataSource;

import weka.core.Utils;

import weka.classifiers.Classifier;

import weka.classifiers.Evaluation;

import weka.classifiers.trees.J48;

import weka.filters.Filter;

import weka.filters.unsupervised.attribute.Remove;

import java.io.FileReader;

import java.util.Random;

public class cv_rw {

    public static Instances getFileInstances(String filename) throws Exception{

       FileReader frData =new FileReader(filename);

       Instances data = new Instances(frData);

       int length= data.numAttributes();

       String[] options = new String[2];

       options[0]="-R";

       options[1]=Integer.toString(length);

       Remove remove =new Remove();

       remove.setOptions(options);

       remove.setInputFormat(data);

       Instances newData= Filter.useFilter(data, remove);

       return newData;

    }

    public static void main(String[] args) throws Exception {

        // loads data and set class index

       Instances data = getFileInstances("D://Weka_tutorial//WineQuality//RedWhiteWine.arff");

//     System.out.println(instances);

       data.setClassIndex(data.numAttributes()-1);

        // classifier

//      String[] tmpOptions;

//      String classname;

//      tmpOptions     = Utils.splitOptions(Utils.getOption("W", args));

//      classname      = tmpOptions[0];

//      tmpOptions[0]  = "";

//      Classifier cls = (Classifier) Utils.forName(Classifier.class, classname, tmpOptions);

//

//      // other options

//      int runs  = Integer.parseInt(Utils.getOption("r", args));//重复试验

//      int folds = Integer.parseInt(Utils.getOption("x", args));

       int runs=1;

       int folds=10;

       J48 j48= new J48();

//     j48.buildClassifier(instances);

        // perform cross-validation

        for (int i = 0; i < runs; i++) {

          // randomize data

          int seed = i + 1;

          Random rand = new Random(seed);

          Instances randData = new Instances(data);

          randData.randomize(rand);

//        if (randData.classAttribute().isNominal())    //没看懂这里什么意思,往高手回复,万分感谢

//          randData.stratify(folds);

          Evaluation eval = new Evaluation(randData);

          for (int n = 0; n < folds; n++) {

            Instances train = randData.trainCV(folds, n);

            Instances test = randData.testCV(folds, n);

            // the above code is used by the StratifiedRemoveFolds filter, the

            // code below by the Explorer/Experimenter:

            // Instances train = randData.trainCV(folds, n, rand);

            // build and evaluate classifier

            Classifier j48Copy = Classifier.makeCopy(j48);

            j48Copy.buildClassifier(train);

            eval.evaluateModel(j48Copy, test);

          }

          // output evaluation

          System.out.println();

          System.out.println("=== Setup run " + (i+1) + " ===");

          System.out.println("Classifier: " + j48.getClass().getName());

          System.out.println("Dataset: " + data.relationName());

          System.out.println("Folds: " + folds);

          System.out.println("Seed: " + seed);

          System.out.println();

          System.out.println(eval.toSummaryString("=== " + folds + "-fold Cross-validation run " + (i+1) + "===", false));

        }

    }

}

运行程序得到实验结果:

=== Setup run 1 ===

Classifier:
weka.classifiers.trees.J48

Dataset:
RedWhiteWine-weka.filters.unsupervised.instance.Randomize-S42-weka.filters.unsupervised.instance.Randomize-S42-weka.filters.unsupervised.attribute.Remove-R13

Folds: 10

Seed: 1

=== 10-fold Cross-validation run
1===

Correctly Classified Instances        6415               98.7379 %

Incorrectly Classified
Instances        82                1.2621 %

Kappa statistic                          0.9658

Mean absolute error                      0.0159

Root mean squared error                  0.1109

Relative absolute error                  4.2898 %

Root relative squared error             25.7448 %

Total Number of Instances             6497

使用weka进行Cross-validation实验的更多相关文章

  1. 交叉验证(cross validation)

    转自:http://www.vanjor.org/blog/2010/10/cross-validation/ 交叉验证(Cross-Validation): 有时亦称循环估计, 是一种统计学上将数据 ...

  2. Cross Validation(交叉验证)

    交叉验证(Cross Validation)方法思想 Cross Validation一下简称CV.CV是用来验证分类器性能的一种统计方法. 思想:将原始数据(dataset)进行分组,一部分作为训练 ...

  3. S折交叉验证(S-fold cross validation)

    S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...

  4. 交叉验证(Cross Validation)简介

    参考    交叉验证      交叉验证 (Cross Validation)刘建平 一.训练集 vs. 测试集 在模式识别(pattern recognition)与机器学习(machine lea ...

  5. cross validation笔记

    preface:做实验少不了交叉验证,平时常用from sklearn.cross_validation import train_test_split,用train_test_split()函数将数 ...

  6. cross validation

    k-folder cross-validation:k个子集,每个子集均做一次测试集,其余的作为训练集.交叉验证重复k次,每次选择一个子集作为测试集,并将k次的平均交叉验证识别正确率作为结果.优点:所 ...

  7. 交叉验证(Cross Validation)方法思想简介

      以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train ...

  8. 交叉验证(Cross Validation)原理小结

    交叉验证是在机器学习建立模型和验证模型参数时常用的办法.交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏. ...

  9. 交叉验证 Cross validation

    来源:CSDN: boat_lee 简单交叉验证 hold-out cross validation 从全部训练数据S中随机选择s个样例作为训练集training set,剩余的作为测试集testin ...

  10. Cross Validation done wrong

    Cross Validation done wrong Cross validation is an essential tool in statistical learning 1 to estim ...

随机推荐

  1. 【数位DP】Hdu 3652:B-number

    B-number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  2. HTML可编辑下拉框

    <div style="position:relative;">   <select style="width:120px;" onchang ...

  3. 【NGUI】屏幕自适应(不用UIStretch,用UIRoot)---------------good

    原地址:http://blog.csdn.net/lzhq1982/article/details/18814023 这篇文章是转载的,之前用UIStretch做屏幕自适应,但一直有两个硬伤让我难受, ...

  4. sqlmap文件在tomcat7中运行报错原因及<![CDATA[ ]]>

    sqlmap在eclipse中运行,好好的.放到tomcat7中抛出如下异常: Caused by: java.lang.RuntimeException: Error occurred. Cause ...

  5. Android 图片缩放

    以下演示将一个ImageView的高度设置为两倍: 布局文件main.xml <?xml version="1.0" encoding="utf-8"?& ...

  6. photoshop:模仿-广告放射背景

    模仿对象:图片大小960*400 过程: 1.新建文档,大小为:960*800 2.选择渐变工具,黑白从上往下渐变 3.滤镜->扭曲->波浪,参考设置 4.滤镜->扭曲->极坐 ...

  7. ZOJ1204——Additive equations(DFS)

    Additive equations Description We all understand that an integer set is a collection of distinct int ...

  8. 理解extern char s[100]与extern char *s

    在x.c中定义了一个字符数组 char s[100],在l.c中进行引用extern char s[200], 有些c程序新手经常把它写成extern char *s. 这两种写法的含义一样吗? 首先 ...

  9. 【HDOJ】4393 Throw nails

    水题,优先级队列. /* 4393 */ #include <iostream> #include <sstream> #include <string> #inc ...

  10. ASP.NET的六种验证控件的使用

    C# 中的验证控件分为一下六种 :1 CompareValidator:比较验证,两个字段的值是否相等,比如判断用户输入的密码和确认密码是否一致,则可以用改控件: 2 CustomValidator ...