//rbtree.h

/*
  Red Black Trees
  (C) 1999  Andrea Arcangeli <andrea@suse.de>
 
  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

  linux/include/linux/rbtree.h

  To use rbtrees you'll have to implement your own insert and search cores.
  This will avoid us to use callbacks and to drop drammatically performances.
  I know it's not the cleaner way,  but in C (not in C++) to get
  performances and genericity...

  Some example of insert and search follows here. The search is a plain
  normal search over an ordered tree. The insert instead must be implemented
  in two steps: First, the code must insert the element in order as a red leaf
  in the tree, and then the support library function rb_insert_color() must
  be called. Such function will do the not trivial work to rebalance the
  rbtree, if necessary.

-----------------------------------------------------------------------
static inline struct page * rb_search_page_cache(struct inode * inode,
                         unsigned long offset)
{
    struct rb_node * n = inode->i_rb_page_cache.rb_node;
    struct page * page;

    while (n)
    {
        page = rb_entry(n, struct page, rb_page_cache);

        if (offset < page->offset)
            n = n->rb_left;
        else if (offset > page->offset)
            n = n->rb_right;
        else
            return page;
    }
    return NULL;
}

static inline struct page * __rb_insert_page_cache(struct inode * inode,
                           unsigned long offset,
                           struct rb_node * node)
{
    struct rb_node ** p = &inode->i_rb_page_cache.rb_node;
    struct rb_node * parent = NULL;
    struct page * page;

    while (*p)
    {
        parent = *p;
        page = rb_entry(parent, struct page, rb_page_cache);

        if (offset < page->offset)
            p = &(*p)->rb_left;
        else if (offset > page->offset)
            p = &(*p)->rb_right;
        else
            return page;
    }

    rb_link_node(node, parent, p);

    return NULL;
}

static inline struct page * rb_insert_page_cache(struct inode * inode,
                         unsigned long offset,
                         struct rb_node * node)
{
    struct page * ret;
    if ((ret = __rb_insert_page_cache(inode, offset, node)))
        goto out;
    rb_insert_color(node, &inode->i_rb_page_cache);
out:
    return ret;
}
-----------------------------------------------------------------------
*/

#ifndef    _SLINUX_RBTREE_H
#define    _SLINUX_RBTREE_H

#include <stdio.h>
//#include <linux/kernel.h>
//#include <linux/stddef.h>

struct rb_node
{
    unsigned long  rb_parent_color;
#define    RB_RED        0
#define    RB_BLACK    1
    struct rb_node *rb_right;
    struct rb_node *rb_left;
} /*  __attribute__((aligned(sizeof(long))))*/;
    /* The alignment might seem pointless, but allegedly CRIS needs it */

struct rb_root
{
    struct rb_node *rb_node;
};

#define rb_parent(r)   ((struct rb_node *)((r)->rb_parent_color & ~3))
#define rb_color(r)   ((r)->rb_parent_color & 1)
#define rb_is_red(r)   (!rb_color(r))
#define rb_is_black(r) rb_color(r)
#define rb_set_red(r)  do { (r)->rb_parent_color &= ~1; } while (0)
#define rb_set_black(r)  do { (r)->rb_parent_color |= 1; } while (0)

static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
{
    rb->rb_parent_color = (rb->rb_parent_color & 3) | (unsigned long)p;
}
static inline void rb_set_color(struct rb_node *rb, int color)
{
    rb->rb_parent_color = (rb->rb_parent_color & ~1) | color;
}

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

#define container_of(ptr, type, member) ({          \
    const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
    (type *)( (char *)__mptr - offsetof(type,member) );})

#define RB_ROOT    (struct rb_root) { NULL, }
#define    rb_entry(ptr, type, member) container_of(ptr, type, member)

#define RB_EMPTY_ROOT(root)    ((root)->rb_node == NULL)
#define RB_EMPTY_NODE(node)    (rb_parent(node) == node)
#define RB_CLEAR_NODE(node)    (rb_set_parent(node, node))

static inline void rb_init_node(struct rb_node *rb)
{
    rb->rb_parent_color = 0;
    rb->rb_right = NULL;
    rb->rb_left = NULL;
    RB_CLEAR_NODE(rb);
}

extern void rb_insert_color(struct rb_node *, struct rb_root *);
extern void rb_erase(struct rb_node *, struct rb_root *);

typedef void (*rb_augment_f)(struct rb_node *node, void *data);

extern void rb_augment_insert(struct rb_node *node,
                  rb_augment_f func, void *data);
extern struct rb_node *rb_augment_erase_begin(struct rb_node *node);
extern void rb_augment_erase_end(struct rb_node *node,
                 rb_augment_f func, void *data);

/* Find logical next and previous nodes in a tree */
extern struct rb_node *rb_next(const struct rb_node *);
extern struct rb_node *rb_prev(const struct rb_node *);
extern struct rb_node *rb_first(const struct rb_root *);
extern struct rb_node *rb_last(const struct rb_root *);

/* Fast replacement of a single node without remove/rebalance/add/rebalance */
extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
                struct rb_root *root);

static inline void rb_link_node(struct rb_node * node, struct rb_node * parent,
                struct rb_node ** rb_link)
{
    node->rb_parent_color = (unsigned long )parent;
    node->rb_left = node->rb_right = NULL;

    *rb_link = node;
}

#endif    /* _LINUX_RBTREE_H */

 

//rbtree.c

/*
  Red Black Trees
  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  (C) 2002  David Woodhouse <dwmw2@infradead.org>
 
  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

  linux/lib/rbtree.c
*/

#include "rbtree.h"

static void __rb_rotate_left(struct rb_node *node, struct rb_root *root)
{
    struct rb_node *right = node->rb_right;
    struct rb_node *parent = rb_parent(node);

    if ((node->rb_right = right->rb_left))
        rb_set_parent(right->rb_left, node);
    right->rb_left = node;

    rb_set_parent(right, parent);

    if (parent)
    {
        if (node == parent->rb_left)
            parent->rb_left = right;
        else
            parent->rb_right = right;
    }
    else
        root->rb_node = right;
    rb_set_parent(node, right);
}

static void __rb_rotate_right(struct rb_node *node, struct rb_root *root)
{
    struct rb_node *left = node->rb_left;
    struct rb_node *parent = rb_parent(node);

    if ((node->rb_left = left->rb_right))
        rb_set_parent(left->rb_right, node);
    left->rb_right = node;

    rb_set_parent(left, parent);

    if (parent)
    {
        if (node == parent->rb_right)
            parent->rb_right = left;
        else
            parent->rb_left = left;
    }
    else
        root->rb_node = left;
    rb_set_parent(node, left);
}

void rb_insert_color(struct rb_node *node, struct rb_root *root)
{
    struct rb_node *parent, *gparent;

    while ((parent = rb_parent(node)) && rb_is_red(parent))
    {
        gparent = rb_parent(parent);

        if (parent == gparent->rb_left)
        {
            {
                register struct rb_node *uncle = gparent->rb_right;
                if (uncle && rb_is_red(uncle))
                {
                    rb_set_black(uncle);
                    rb_set_black(parent);
                    rb_set_red(gparent);
                    node = gparent;
                    continue;
                }
            }

            if (parent->rb_right == node)
            {
                register struct rb_node *tmp;
                __rb_rotate_left(parent, root);
                tmp = parent;
                parent = node;
                node = tmp;
            }

            rb_set_black(parent);
            rb_set_red(gparent);
            __rb_rotate_right(gparent, root);
        } else {
            {
                register struct rb_node *uncle = gparent->rb_left;
                if (uncle && rb_is_red(uncle))
                {
                    rb_set_black(uncle);
                    rb_set_black(parent);
                    rb_set_red(gparent);
                    node = gparent;
                    continue;
                }
            }

            if (parent->rb_left == node)
            {
                register struct rb_node *tmp;
                __rb_rotate_right(parent, root);
                tmp = parent;
                parent = node;
                node = tmp;
            }

            rb_set_black(parent);
            rb_set_red(gparent);
            __rb_rotate_left(gparent, root);
        }
    }

    rb_set_black(root->rb_node);
}

static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
                 struct rb_root *root)
{
    struct rb_node *other;

    while ((!node || rb_is_black(node)) && node != root->rb_node)
    {
        if (parent->rb_left == node)
        {
            other = parent->rb_right;
            if (rb_is_red(other))
            {
                rb_set_black(other);
                rb_set_red(parent);
                __rb_rotate_left(parent, root);
                other = parent->rb_right;
            }
            if ((!other->rb_left || rb_is_black(other->rb_left)) &&
                (!other->rb_right || rb_is_black(other->rb_right)))
            {
                rb_set_red(other);
                node = parent;
                parent = rb_parent(node);
            }
            else
            {
                if (!other->rb_right || rb_is_black(other->rb_right))
                {
                    rb_set_black(other->rb_left);
                    rb_set_red(other);
                    __rb_rotate_right(other, root);
                    other = parent->rb_right;
                }
                rb_set_color(other, rb_color(parent));
                rb_set_black(parent);
                rb_set_black(other->rb_right);
                __rb_rotate_left(parent, root);
                node = root->rb_node;
                break;
            }
        }
        else
        {
            other = parent->rb_left;
            if (rb_is_red(other))
            {
                rb_set_black(other);
                rb_set_red(parent);
                __rb_rotate_right(parent, root);
                other = parent->rb_left;
            }
            if ((!other->rb_left || rb_is_black(other->rb_left)) &&
                (!other->rb_right || rb_is_black(other->rb_right)))
            {
                rb_set_red(other);
                node = parent;
                parent = rb_parent(node);
            }
            else
            {
                if (!other->rb_left || rb_is_black(other->rb_left))
                {
                    rb_set_black(other->rb_right);
                    rb_set_red(other);
                    __rb_rotate_left(other, root);
                    other = parent->rb_left;
                }
                rb_set_color(other, rb_color(parent));
                rb_set_black(parent);
                rb_set_black(other->rb_left);
                __rb_rotate_right(parent, root);
                node = root->rb_node;
                break;
            }
        }
    }
    if (node)
        rb_set_black(node);
}

void rb_erase(struct rb_node *node, struct rb_root *root)
{
    struct rb_node *child, *parent;
    int color;

    if (!node->rb_left)
        child = node->rb_right;
    else if (!node->rb_right)
        child = node->rb_left;
    else
    {
        struct rb_node *old = node, *left;

        node = node->rb_right;
        while ((left = node->rb_left) != NULL)
            node = left;

        if (rb_parent(old)) {
            if (rb_parent(old)->rb_left == old)
                rb_parent(old)->rb_left = node;
            else
                rb_parent(old)->rb_right = node;
        } else
            root->rb_node = node;

        child = node->rb_right;
        parent = rb_parent(node);
        color = rb_color(node);

        if (parent == old) {
            parent = node;
        } else {
            if (child)
                rb_set_parent(child, parent);
            parent->rb_left = child;

            node->rb_right = old->rb_right;
            rb_set_parent(old->rb_right, node);
        }

        node->rb_parent_color = old->rb_parent_color;
        node->rb_left = old->rb_left;
        rb_set_parent(old->rb_left, node);

        goto color;
    }

    parent = rb_parent(node);
    color = rb_color(node);

    if (child)
        rb_set_parent(child, parent);
    if (parent)
    {
        if (parent->rb_left == node)
            parent->rb_left = child;
        else
            parent->rb_right = child;
    }
    else
        root->rb_node = child;

color:
    if (color == RB_BLACK)
        __rb_erase_color(child, parent, root);
}

static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
{
    struct rb_node *parent;

up:
    func(node, data);
    parent = rb_parent(node);
    if (!parent)
        return;

    if (node == parent->rb_left && parent->rb_right)
        func(parent->rb_right, data);
    else if (parent->rb_left)
        func(parent->rb_left, data);

    node = parent;
    goto up;
}

/*
* after inserting @node into the tree, update the tree to account for
* both the new entry and any damage done by rebalance
*/
void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
{
    if (node->rb_left)
        node = node->rb_left;
    else if (node->rb_right)
        node = node->rb_right;

    rb_augment_path(node, func, data);
}

/*
* before removing the node, find the deepest node on the rebalance path
* that will still be there after @node gets removed
*/
struct rb_node *rb_augment_erase_begin(struct rb_node *node)
{
    struct rb_node *deepest;

    if (!node->rb_right && !node->rb_left)
        deepest = rb_parent(node);
    else if (!node->rb_right)
        deepest = node->rb_left;
    else if (!node->rb_left)
        deepest = node->rb_right;
    else {
        deepest = rb_next(node);
        if (deepest->rb_right)
            deepest = deepest->rb_right;
        else if (rb_parent(deepest) != node)
            deepest = rb_parent(deepest);
    }

    return deepest;
}

/*
* after removal, update the tree to account for the removed entry
* and any rebalance damage.
*/
void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
{
    if (node)
        rb_augment_path(node, func, data);
}

/*
* This function returns the first node (in sort order) of the tree.
*/
struct rb_node *rb_first(const struct rb_root *root)
{
    struct rb_node    *n;

    n = root->rb_node;
    if (!n)
        return NULL;
    while (n->rb_left)
        n = n->rb_left;
    return n;
}

struct rb_node *rb_last(const struct rb_root *root)
{
    struct rb_node    *n;

    n = root->rb_node;
    if (!n)
        return NULL;
    while (n->rb_right)
        n = n->rb_right;
    return n;
}

struct rb_node *rb_next(const struct rb_node *node)
{
    struct rb_node *parent;

    if (rb_parent(node) == node)
        return NULL;

    /* If we have a right-hand child, go down and then left as far
       as we can. */
    if (node->rb_right) {
        node = node->rb_right;
        while (node->rb_left)
            node=node->rb_left;
        return (struct rb_node *)node;
    }

    /* No right-hand children.  Everything down and left is
       smaller than us, so any 'next' node must be in the general
       direction of our parent. Go up the tree; any time the
       ancestor is a right-hand child of its parent, keep going
       up. First time it's a left-hand child of its parent, said
       parent is our 'next' node. */
    while ((parent = rb_parent(node)) && node == parent->rb_right)
        node = parent;

    return parent;
}

struct rb_node *rb_prev(const struct rb_node *node)
{
    struct rb_node *parent;

    if (rb_parent(node) == node)
        return NULL;

    /* If we have a left-hand child, go down and then right as far
       as we can. */
    if (node->rb_left) {
        node = node->rb_left;
        while (node->rb_right)
            node=node->rb_right;
        return (struct rb_node *)node;
    }

    /* No left-hand children. Go up till we find an ancestor which
       is a right-hand child of its parent */
    while ((parent = rb_parent(node)) && node == parent->rb_left)
        node = parent;

    return parent;
}

void rb_replace_node(struct rb_node *victim, struct rb_node *new,
             struct rb_root *root)
{
    struct rb_node *parent = rb_parent(victim);

    /* Set the surrounding nodes to point to the replacement */
    if (parent) {
        if (victim == parent->rb_left)
            parent->rb_left = new;
        else
            parent->rb_right = new;
    } else {
        root->rb_node = new;
    }
    if (victim->rb_left)
        rb_set_parent(victim->rb_left, new);
    if (victim->rb_right)
        rb_set_parent(victim->rb_right, new);

    /* Copy the pointers/colour from the victim to the replacement */
    *new = *victim;
}

linux内核-红黑树的更多相关文章

  1. 红黑树(三)之 Linux内核中红黑树的经典实现

    概要 前面分别介绍了红黑树的理论知识 以及 通过C语言实现了红黑树.本章继续会红黑树进行介绍,下面将Linux 内核中的红黑树单独移植出来进行测试验证.若读者对红黑树的理论知识不熟悉,建立先学习红黑树 ...

  2. 红黑树(二)之 C语言的实现

    概要 红黑树在日常的使用中比较常用,例如Java的TreeMap和TreeSet,C++的STL,以及Linux内核中都有用到.之前写过一篇文章专门介绍红黑树的理论知识,本文将给出红黑数的C语言的实现 ...

  3. 红黑树(四)之 C++的实现

    概要 前面分别介绍红黑树的理论知识和红黑树的C语言实现.本章是红黑树的C++实现,若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章. 目录1. 红黑树的介绍2. 红黑树的C++ ...

  4. 红黑树(五)之 Java的实现

    概要 前面分别介绍红黑树的理论知识.红黑树的C语言和C++的实现.本章介绍红黑树的Java实现,若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章.还是那句老话,红黑树的C/C+ ...

  5. 详解Linux内核红黑树算法的实现

    转自:https://blog.csdn.net/npy_lp/article/details/7420689 内核源码:linux-2.6.38.8.tar.bz2 关于二叉查找树的概念请参考博文& ...

  6. 2019-2020-1 20199312 《Linux内核原理与分析》 第九周作业

    进程调度 1.中断:起到切出进程指令流的作用.中断处理程序是与进程无关的内核指令流.中断类型: 硬中断:可屏蔽中断和不可屏蔽中断.高电平说明有中断请求. 软中断/异常: 故障:出问题,但可以恢复到当前 ...

  7. Linux内核之于红黑树and AVL树

    为什么Linux早先使用AVL树而后来倾向于红黑树?       实际上这是由红黑树的有用主义特质导致的结果,本短文依旧是形而上的观点.红黑树能够直接由2-3树导出.我们能够不再提红黑树,而仅仅提2- ...

  8. linux 内核数据结构之红黑树.

    转载: http://www.cnblogs.com/haippy/archive/2012/09/02/2668099.html https://zh.wikipedia.org/zh/%E7%BA ...

  9. Linux 内核里的数据结构:红黑树(rb-tree)

    转自:https://www.cnblogs.com/slgkaifa/p/6780299.html 作为一种数据结构.红黑树可谓不算朴素.由于各种宣传让它过于神奇,网上搜罗了一大堆的关于红黑树的文章 ...

随机推荐

  1. GIS的数学基础

    在这里需要说明一点,任何领域的概念.技术都有其特定的适用范围,有其解决的问题,有其发展的历史,所以,抛开应用环境.范围来谈技术就像是没有根系的枝丫,枝丫再粗壮也只是一根木头而已. 那接下来我们来聊聊什 ...

  2. 1040: [ZJOI2008]骑士 - BZOJ

    Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火 ...

  3. json分别算出元素的个数和最多的元素

    个数: var str = 'aaafsdsaaasasasasaa'; var json = {}; for (var i = 0; i < str.length; i++) { if(!js ...

  4. [转载]html5直接在网页上播放视频音频兼容所有浏览器

    文章给大家分享一个html5直接在网页上播放视频兼容所有浏览器,有需要的同学可参考. HTML5可以用video标签来播放视频 当前,video 元素支持三种视频格式: 格式 IE Firefox O ...

  5. Tiny6410 设备驱动之helloworld

    在自己的工作目录下建立helloworld_driver.c #include <linux/init.h> #include <linux/module.h> //代码遵守的 ...

  6. Nagios监控部署(转)

    转自 http://kyhack.blog.51cto.com/490370/213355 ky.blog 一.nagios简介        nagios是一款用于系统和网络监控的应用程序,它可以在 ...

  7. 关于用 MySQL 存储 Emoji

    http://www.v2ex.com/t/137724 如果你希望让你的网站或者 App 支持 Emoji,那么在初次设置 MySQL 时,有一些细节你需要知道. Emoji Emoji 字符的特殊 ...

  8. 看文档要看仔细,英语要加强啊... cocos2d-x 的 API 和 对应版本的 cocos2d-js 的 API 没有完全对应

    /** * Sets the X rotation (angle) of the node in degrees which performs a horizontal rotational skew ...

  9. iOS顶部滑动菜单:FDSlideBar 与NinaPagerView

    FDSlideBar 是一个顶部滑动菜单,如常见的网易.腾讯新闻等样式.该控件支持自定颜色.字体等多种样式风格.菜单间切换流畅,具有较好的体验性.下部的内容展示经过挣 扎,最后选择了 UITableV ...

  10. [Unity菜鸟] 笔记2 —— 问题篇

    记录在学习<Unity 3.x 游戏开发 经典教材>时遇到的各种问题与笔记 1. 初始不能降低Terrain的高度,需要到Terrain设置的第二个按钮中将Height从0调高 (注意:最 ...