本文主要是对红宝书(第八版)第五章中给出的透视投影矩阵和正交投影矩阵做一个简单推导。投影矩阵的目的是:原始点P(x,y,z)对应后投影点P'(x',y',z')满足x',y',z'∈[-1,1]。

  一、透视投影                                                                                                                    

  下图为透视投影的视锥体:

注:上图中忘了标注了,远裁剪平面距离原点距离为f,近裁剪平面距离原点距离为n。

设P(x0, y0, z0),我们分别求各个坐标在投影后的值。将P点投影到近平面上,首先看x方向上的投影,沿着过P点,且平行于xoz平面切一刀,有如下图:

假设投影后的x坐标为:x_n(在近裁剪平面的投影),由相似三角形的性质,有

,可以得到:

同理,有

这样其实实现了透视投影,近大远小的效果,因为z0越大,则x1,y1就越小。为了将这两个值转换到[-1,1]区间内,设l和r分别为近裁剪平面左、右边框的x坐标,即l=-w/2,r=w/2(如图所示,w为上下边框的长度),为了使任何投影到近裁剪平面的点都在区间内,转换后,[l',r']∈[0,1],其中l',r'分别为l和r转换后的值。因为是线性转换,可领x'=kx+b,则下式成立:

求得,

再根据之前的结果,可以得到归一化后的x坐标为:

同理,设t和p分别为近裁剪平面上下边框的y坐标,则:

投影后的坐标都有一个共同因子——[-1/z0],正好对应变换后w=-z0。

接下来,我们看z要满足什么要求。为简化讨论,根据以上结论,我们假设透视变换有下述形式:

于是:

最后的变换矩阵如下:

OpenGL中投影矩阵的推导的更多相关文章

  1. OpenGL中投影矩阵基础知识

    投影矩阵元素Projection Matrix 投影矩阵构建: 当f趋向于正无穷时: 一个重要的事实是,当f趋于正无穷时,在剪裁空间中点的z坐标跟w坐标相等.计算方法如下: 经过透视除法后,z坐标变为 ...

  2. 关于opengl中的矩阵平移,矩阵旋转,推导过程理解 OpenGL计算机图形学的一些必要矩阵运算知识

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/12166896.html 为什么引入齐次坐标的变换矩阵可以表示平移呢? - Yu Mao的回答 ...

  3. (转)投影矩阵的推导(Deriving Projection Matrices)

    转自:http://blog.csdn.net/gggg_ggg/article/details/45969499 本文乃<投影矩阵的推导>译文,原文地址为: http://www.cod ...

  4. OpenGL中的矩阵相乘

    OpenGL中的矩阵相乘 1, 在OpenGL中所有的视图变换,模型变换 都是4×4矩阵,每个后续的glMultiMatrix*(N),或者变换函数,glTranslate* (),glRotate* ...

  5. [OpenGL](翻译+补充)投影矩阵的推导

    1.简介 基本是翻译和补充 http://www.songho.ca/opengl/gl_projectionmatrix.html 计算机显示器是一个2D的平面,一个3D的场景要被OpenGL渲染必 ...

  6. OpenGL中摄像机矩阵的计算原理

    熟悉OpenGL|ES的朋友,可能会经常设置摄像机的view矩阵,iOS中相对较好,已经封装了方向,只需要设置摄像机位置,目标点位置以及UP向量即可.下面先介绍下摄像机view矩阵的计算原理.此处假设 ...

  7. 【脚下生根】之深度探索安卓OpenGL投影矩阵

    世界变化真快,前段时间windows开发技术热还在如火如荼,web技术就开始来势汹汹,正当web呈现欣欣向荣之际,安卓小机器人,咬过一口的苹果,winPhone开发平台又如闪电般划破了混沌的web世界 ...

  8. Android OpenGL ES(六)----进入三维在代码中创建投影矩阵和旋转矩阵

    我们如今准备好在代码中加入透视投影了. Android的Matrix类为它准备了两个方法------frustumM()和perspectiveM(). 不幸的是.frustumM()的个缺陷,它会影 ...

  9. OpenGL中两种计算投影矩阵的函数

    OpenGL无意间同时看到两种创建投影矩阵的写法,可以说它们完成的是同样的功能,但写法完全不同,可以观摩一下什么叫做异曲同工之妙... 第一种: gltMakeShadowMatrix函数是重点 // ...

随机推荐

  1. sharepoint warmup

    /---------------- using System;using System.Collections.Generic; using System.Text;using System.Net; ...

  2. python学习笔记11(函数二): 参数的传递、变量的作用域

    一.函数形参和实参的区别 形参全称是形式参数,在用def关键字定义函数时函数名后面括号里的变量称作为形式参数. 实参全称为实际参数,在调用函数时提供的值或者变量称作为实际参数. >>> ...

  3. poj 3013 Big Christmas Tree (最短路径Dijsktra) -- 第一次用优先队列写Dijsktra

    http://poj.org/problem?id=3013 Big Christmas Tree Time Limit: 3000MS   Memory Limit: 131072K Total S ...

  4. CSRF注入式攻击防御讲解

    0x01 什么是CSRF攻击 CSRF是Cross Site Request Forgery的缩写(也缩写为XSRF),直译过来就是跨站请求伪造的意思,也就是在用户会话下对某个CGI做一些GET/PO ...

  5. HDU 1429 胜利大逃亡(续)(三维BFS)

    题目链接 题意 : 中文题不详述. 思路 : 这个题和1885差不多一样的,所以我直接改了改那个代码就交上了,链接 #include <stdio.h> #include <stri ...

  6. Android GridView、ListView、ScrollView上下拉刷新

    实现方法是将显示的内容最外层的ViewGroup做成一个LinearLayout,并扩展它,使其可以上下拖动. 重点是实现View的onTouch方法. 下载:http://files.cnblogs ...

  7. http://jingyan.baidu.com/article/e4511cf33479812b855eaf67.html

    http://jingyan.baidu.com/article/e4511cf33479812b855eaf67.html

  8. iOS中关于KVC与KVO知识点

    iOS中关于KVC与KVO知识点 iOS中关于KVC与KVO知识点  一.简介 KVC/KVO是观察者模式的一种实现,在Cocoa中是以被万物之源NSObject类实现的NSKeyValueCodin ...

  9. android 官方教程中文版

    感谢这些默默奉献的人 :) https://github.com/kesenhoo/android-training-course-in-chinese http://hukai.me/android ...

  10. 常用的富文本框插件FreeTextBox、CuteEditor、CKEditor、FCKEditor、TinyMCE、KindEditor ;和CKEditor实例

    http://www.cnblogs.com/cxd4321/archive/2013/01/30/2883078.html 目前市面上用的比较多的富文本编辑器有: FreeTextBox 一个有很多 ...