Let $\scrM$ be a $p$-dimensional subspace of $\scrH$ and $\scrN$ its orthogonal complement. Choosing $j$ vectors from $\scrM$ and $k-j$ vectors from $\scrN$ and forming the linear span of the antisymmetric tensor products of all such vectors, we get different subspaces of $\wedge^k\scrH$; for example, one of those is $\vee^k\scrM$. Determine all the subspaces thus obtained and their dimensionalities. Do the same for $\vee^k\scrH$.

Solution. (1). Let $e_1,\cdots,e_p$ be the orthonormal basis of $\scrM$, and $e_{p+1},\cdots,e_k$ be the orthonormal basis of $\scrN$. Then for $0\leq j\leq k$, the subspace we consider has a basis $$\bex e_{i_1}\wedge \cdots \wedge e_{i_j}\wedge e_{i_{j+1}}\wedge\cdots \wedge e_{i_k}, \eex$$ where $$\bex 1\leq i_1<\cdots<i_j\leq p<p+1\leq i_{j+1}<\cdots<i_k\leq n. \eex$$ Thus its dimension is $$\bex \sex{p\atop j}\cdot \sex{n-p\atop k-j}. \eex$$ (2). Now we consider the subspace of $\vee^k\scrH$. In this case, it has a basis $$\bex e_{i_1}\vee \cdots \vee e_{i_j}\vee e_{i_{j+1}}\vee \cdots \vee e_{i_k}, \eex$$ where $$\bex 1\leq i_1\leq\cdots\leq i_j\leq p<p+1\leq i_{j+1}\leq\cdots\leq i_k\leq n. \eex$$ Thus its dimension is $$\bex \sex{p+j-1\atop j}\cdot \sex{n-p+k-j+1\atop k-j}. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.3的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. Java内存区域与内存溢出异常(二)

    了解Java虚拟机的运行时数据区之后,大致知道了虚拟机内存的概况,内存中都放了些什么,接下来将了解内存中数据的其他细节,如何创建.如何布局.如何访问.这里虚拟机以HotSpot为例,内存区域以Java ...

  2. HelloWorld和数据绑定

    HelloWorld和数据绑定 目录导读: AngularJS 系列 学习笔记 目录篇 前言: 好记性不如烂键盘,随笔就是随手笔记,希望以后有用. 本篇目录: 1. Hello World 2. An ...

  3. crontab定时任务中文乱码问题

    手动执行都很正常的的脚本,添加到定时任务中日志文件全是乱码经过多方查证终于找到了原因! crontab启动的任务没有获取系统的环境变量,导致中文乱码解决办法:   在执行的脚步中添加编码方式或者添加对 ...

  4. UILabel 根据内容的多少来计算label的frame

    self.label.text = @"...."; 计算 frame 的最新方法 //1.设置lable最大显示行数 self.label.numberOfLines = 0; ...

  5. hdu 2566 统计硬币

    http://acm.hdu.edu.cn/showproblem.php?pid=2566 假设一堆由1分.2分.5分组成的n个硬币总面值为m分,求一共有多少种可能的组合方式(某种面值的硬币可以数量 ...

  6. Spring.net Could not load type from string value问题解决办法

    Spring.net Could not load type from string value "xxx" 错误原因可能有: 1.spring.net配置错误,注意要区别配置文件 ...

  7. 酷摄影:关于梦 - Miki takahashi

    这组摄影来自于日本东京摄影师 Miki takahashi 是一组双重曝光摄影,分开看也许很平常,但是结合在一起却非常有韵味. [gallery]

  8. 阿里云,CentOS下yum安装mysql,jdk,tomcat

    首先说明,服务器是阿里云的,centos6.3_64位安全加固版.首先需要登陆进来,使用的是putty,因为最初的时候,Xshell登陆会被拒绝. 0. 创建个人文件夹 # 使用 yum 安装tomc ...

  9. linux命令中 rpm –qa|grep softname的含义

    rpm –qa是列出所有rpm包后面接管道 |grep softname就是查含有softname的包名

  10. log4jdbc-remix安装配置

    1.maven安装依赖 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://w ...