Domination

Time Limit: 1 Sec

Memory Limit: 256 MB

题目连接

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3822

Description

Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows and M columns.

Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominatedby the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.

"That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

There are only two integers N and M (1 <= NM <= 50).

Output

For each test case, output the expectation number of days.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

2
1 3
2 2
 

Sample Output

3.000000000000
2.666666666667

HINT

题意

每次这个人会随机选择一个空格子扔棋子,然后问你期望扔多少次,可以把n*m的矩阵,每一行和每一列都至少有一个棋子

题解:

期望dp,用容斥做

dp[i][j][k]表示占领了i行j列,用了k个

代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector>
#include <stack>
#include <map>
#include <set>
#include <queue>
#include <iomanip>
#include <string>
#include <ctime>
#include <list>
#include <bitset>
typedef unsigned char byte;
#define pb push_back
#define input_fast std::ios::sync_with_stdio(false);std::cin.tie(0)
#define local freopen("in.txt","r",stdin)
#define pi acos(-1) using namespace std;
const int maxn = + ;
double dp[maxn][maxn][maxn*maxn];
int n , m ; inline double GetDouble(int x)
{
return (double)x;
} void initiation()
{
memset(dp,-,sizeof(dp));
scanf("%d%d",&n,&m);
} double dfs(int x,int y,int k)
{
if(dp[x][y][k]> -0.5) return dp[x][y][k];
double & ans = dp[x][y][k] = ;
if(x == n && y == m ) return ans;
int all = m*n-k;
if(x*y != k) ans += dfs(x,y,k+)*GetDouble(x*y-k)/GetDouble(all);
if(x != n && y != m) ans += dfs(x+,y+,k+)*GetDouble((n-x)*(m-y))/GetDouble(all);
if(x != n && y != ) ans += dfs(x+,y,k+)*GetDouble(y*(n-x))/GetDouble(all);
if(y != m && x != ) ans += dfs(x,y+,k+)*GetDouble(x*(m-y))/GetDouble(all);
ans += ;
return ans;
} double solve()
{
return dfs(,,);
} int main(int argc,char *argv[])
{
int Case;
scanf("%d",&Case);
while(Case--)
{
initiation();
printf("%.12lf\n",solve());
}
return ;
}

ZOJ 3822 Domination 期望dp的更多相关文章

  1. zoj 3822 Domination (概率dp 天数期望)

    题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...

  2. zoj 3822 Domination 概率dp 2014牡丹江站D题

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  3. ZOJ 3822 Domination(概率dp)

    一个n行m列的棋盘,每天可以放一个棋子,问要使得棋盘的每行每列都至少有一个棋子 需要的放棋子天数的期望. dp[i][j][k]表示用了k天棋子共能占领棋盘的i行j列的概率. 他的放置策略是,每放一次 ...

  4. zoj 3822 Domination (可能性DP)

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  5. ZOJ - 3822 Domination (DP)

    Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess ...

  6. ZOJ 3822 Domination 概率dp 难度:0

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  7. ZOJ 3822 Domination(概率dp 牡丹江现场赛)

    题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...

  8. zoj 3822 Domination(dp)

    题目链接:zoj 3822 Domination 题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望. 解题思路:大白书上概率那一张有一 ...

  9. zoj 3822(概率dp)

    ZOJ Problem Set - 3822 Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Ju ...

随机推荐

  1. maven常用插件配置详解

    常用插件配置详解Java代码    <!-- 全局属性配置 --> <properties> <project.build.name>tools</proje ...

  2. light工具

    环境变量 C:\Users\zhangqm\AppData\Roaming\npm\; 安装 npm install -gd jresplus 不要用npm install -gd light pro ...

  3. 【转】Cocos2d-x 弹出对话框的设计与实现

    转自:http://www.tairan.com/archives/4854 我们时常需要这么些功能,弹出一个层,给与用户一些提示,这也是一种模态窗口,在没有对当前对话框进行确认的时候,不能继续往下操 ...

  4. Erlang入门(一)

    读erlang.org上面的Erlang Course四天教程1.数字类型,需要注意两点1)B#Val表示以B进制存储的数字Val,比如 7> 2#101.5 二进制存储的101就是10进制的5 ...

  5. Android学习过程

    0. Tutorial 1. 基础知识的书 2. 实践为主的书 3. 阅读开源项目 4. 自己做项目 5. 理论为主的书 6. 编程规范和技巧性的书 通过实例了解Android开发 组件:Activi ...

  6. 静态Web开发 DOM

    四章 Dom 1节dom中的顶级对象 dom(文档对象模型)js最终是要操作html页面,让html变成DHtml,而操作Html页面就要用到DOMDOM可以吧Html页面模拟成一个对象,如果js只是 ...

  7. HDU 5285 wyh2000 and pupil

    题意:有一群人,已知某两人之间互相不认识,要把这群人分成两部分,每部分至少一人,且在每部分内没有人互不认识. 解法:图染色.某场bestcoder第二题……看完题觉得是个二分图……完全不会二分图什么的 ...

  8. Loading Data into HDFS

    How to use a PDI job to move a file into HDFS. Prerequisites In order to follow along with this how- ...

  9. 0、IOS8:Xcode6 playground

    一.Playground介绍 Playground是Xcode6中自带的Swift代码开发环境.俗话说“功欲善其事,必先利其器”.以前在Xcode5中编写脚本代码,例如编写JS,其编写过程很痛苦,Xc ...

  10. Stm32外围模块编程初始化步骤

    Stm32外围模块编程初始化步骤: 一.外部中断 1)初始化 IO 口为输入. 这一步设置你要作为外部中断输入的 IO 口的状态,可以设置为上拉/下拉输入,也可以设置为浮空输入,但浮空的时候外部一定要 ...