特征值分解,奇异值分解(SVD)
特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。
1. 特征值:
如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:
写成矩阵形式:
这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量。
2. 特征分解:
特征值分解是将一个矩阵分解成下面的形式:
其中Q是这个矩阵A的特征向量组成的矩阵,正交矩阵是可逆的。Σ = diag(λ1, λ2, ..., λn)是一个对角阵,每一个对角线上的元素就是一个特征值。
首先,要明确的是,一个矩阵其实就是一个线性变换,因为一个矩阵乘以一个向量后得到的向量,其实就相当于将这个向量进行了线性变换。
当矩阵是高维的情况下,那么这个矩阵就是高维空间下的一个线性变换,这个线性变化可能没法通过图片来表示,但是可以想象,这个变换也同样有很多的变换方向,我们通过特征值分解得到的前N个特征向量,那么就对应了这个矩阵最主要的N个变化方向。我们利用这前N个变化方向,就可以近似这个矩阵(变换)。也就是之前说的:提取这个矩阵最重要的特征。总结一下,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干很多的事情。
不过,特征值分解也有很多的局限,比如说变换的矩阵必须是方阵。
3. 奇异值分解
特征值分解是一个提取矩阵特征很不错的方法,但是它只适用于方阵。而在现实的世界中,我们看到的大部分矩阵都不是方阵,比如说有M个学生,每个学生有N科成绩,这样形成的一个M * N的矩阵就可能不是方阵,我们怎样才能像描述特征值一样描述这样一般矩阵呢的重要特征呢?奇异值分解就是用来干这个事的,奇异值分解是一个能适用于任意的矩阵的一种分解的方法。
奇异值分解是一个能适用于任意的矩阵的一种分解的方法:
假设A是一个M * N的矩阵,那么得到的U是一个M * M的方阵(里面的向量是正交的,U里面的向量称为左奇异向量),Σ是一个M * N的实数对角矩阵(对角线以外的元素都是0,对角线上的元素称为奇异值),VT(V的转置)是一个N * N的矩阵,里面的向量也是正交的,V里面的向量称为右奇异向量),从图片来反映几个相乘的矩阵的大小可得下面的图片
那么奇异值和特征值是怎么对应起来的呢?首先,我们将一个矩阵A的转置 AT * A,将会得到 ATA 是一个方阵,我们用这个方阵求特征值可以得到: 这里得到的v,就是我们上面的右奇异向量。此外我们还可以得到:
这里的σi 就是就是上面说的奇异值,ui就是上面说的左奇异向量。
常见的做法是将奇异值由大而小排列。如此Σ便能由M唯一确定了。
奇异值σ跟特征值类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵,这里定义一下部分奇异值分解:
r是一个远小于m、n的数,这样矩阵的乘法看起来像是下面的样子:
右边的三个矩阵相乘的结果将会是一个接近于A的矩阵,在这儿,r越接近于n,则相乘的结果越接近于A。而这三个矩阵的面积之和(在存储观点来说,矩阵面积越小,存储量就越小)要远远小于原始的矩阵A,我们如果想要压缩空间来表示原矩阵A,我们存下这里的三个矩阵:U、Σ、V就好了。
参考:
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用
特征值分解,奇异值分解(SVD)的更多相关文章
- 自适应滤波:奇异值分解SVD
作者:桂. 时间:2017-04-03 19:41:26 链接:http://www.cnblogs.com/xingshansi/p/6661230.html 声明:欢迎被转载,不过记得注明出处哦 ...
- 特征值分解与奇异值分解(SVD)
1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其 ...
- 数学基础系列(六)----特征值分解和奇异值分解(SVD)
一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...
- matlab特征值分解和奇异值分解
特征值分解 函数 eig 格式 d = eig(A) %求矩阵A的特征值d,以向量形式存放d. d = eig(A,B) %A.B为方阵,求广义特征值d,以向量形式存放d. ...
- 【SVD、特征值分解、PCA关系】
一.SVD 1.含义: 把矩阵分解为缩放矩阵+旋转矩阵+特征向量矩阵. A矩阵的作用是将一个向量从V这组正交基向量的空间旋转到U这组正交基向量的空间,并对每个方向进行了一定的缩放,缩放因子就是各 ...
- 讲一下numpy的矩阵特征值分解与奇异值分解
1.特征值分解 主要还是调包: from numpy.linalg import eig 特征值分解: A = P*B*PT 当然也可以写成 A = QT*B*Q 其中B为对角元为A的特征值的对 ...
- 数值分析之奇异值分解(SVD)篇
在很多线性代数问题中,如果我们首先思考若做SVD,情况将会怎样,那么问题可能会得到更好的理解[1]. --Lloyd N. ...
- 强大的矩阵奇异值分解(SVD)及其应用
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- 转载:奇异值分解(SVD) --- 线性变换几何意义(下)
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...
随机推荐
- 安装sybase12.0,运行时报错异常。
报错为:invalid command line argument ' and' 当通过开始菜单打开"配置服务器"时,回报如上异常,当继续创建服务器是,不会成功.实际上不是程序出错 ...
- .NET DLL 保护措施详解(四)各操作系统运行情况
我准备了WEB应用程序及WinForm应用程序,分别在WIN SERVER 2012/2008/2003.Win7/10上实测,以下为实测结果截图: 2012 2008 2003 WIN7 WIN10 ...
- 跟我一起学习ASP.NET 4.5 MVC4.0(五)(转)
前面几篇文章介绍了一下ASP.NET MVC中的一些基础,今天我们一起来学习一下在ASP.NET MVC中控件的封装.在页面中我们会经常使用到Html对象,来程序控件,当然这里的控件不是说ASP.NE ...
- C# 线程锁Lock 死锁
使用lock场景 多线程环境中,不使用lock锁,会形成竞争条件,导致错误. 使用lock 锁 可以保证当有线程操作某个共享资源时,其他线程必须等待直到当前线程完成操作. 即是多线程环境,如果一个线程 ...
- WinDbg配置与下载 (转载)
WinDbg配置和使用基础 WinDbg是微软发布的一款相当优秀的源码级(source-level)调试工具,可以用于Kernel模式调试和用户模式调试,还可以调试Dump文件. 1. Win ...
- html5的自定义data-*属性和jquery的data()方法的使用示例
人们总喜欢往HTML标签上添加自定义属性来存储和操作数据. 但这样做的问题是,你不知道将来会不会有其它脚本把你的自定义属性给重置掉,此外,你这样做也会导致html语法上不符合Html规范,以及一些其它 ...
- iOS - 数组(NSArray)
1. 数组的常用处理方式 //--------------------不可变数组 //1.数组的创建 NSString *s1 = @"zhangsan"; NSString *s ...
- 在别的地方看的<<给程序员介绍一些C++开源库>>,记录给大家共同学习
首先说明这篇文章不是出自我手,大家共同学习. 引用地址:http://oss.org.cn/?action-viewnews-itemid-61998. C++开源库,欢迎补充. C++在“商业应用” ...
- centos6.5 安装mono
mono是一个在linux下兼容.net的软件.安装之前要把开发包装好 源码安装mono wget http://download.mono-project.com/sources/mono/mono ...
- align=absMiddle属性设置
AbsBottom 图像的下边缘与同一行中最大元素的下边缘对齐.AbsMiddle 图像的中间与同一行中最大元素的中间对齐.Baseline 图像的下边缘与第一行文本的下边缘对齐.Bottom 图像的 ...